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Abstract. During a Mass Casualty Incident, it is essential to make ef-
fective decisions to save lives and nursing the injured. This paper presents
a work in progress on the design and development of an explainable deci-
sion support system, intended for the medical personnel and care givers,
that capitalises on multiple modalities to achieve situational awareness
and pre-hospital life support. Our novelty is two-fold: first, we use state-
of-the-art techniques for combining static and time-series data in deep
recurrent neural networks, and second we increase the trustworthiness of
the system by enriching it with neurosymbolic explainable capabilities.

Keywords: pre-hospital life support - Explainable Al - deep neural net-
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1 Introduction

Mass Casualty Incidents (MCIs) are defined as “any event resulting in a number
of victims large enough to disrupt the normal course of emergency and health
care services” [8]. In MClIs, time is critical and the medical personnel should be
aware of potential anomalies and any hazardous situations so as to assign degrees
of urgency and decide the order of treatment of a large number of patients.

Deep Learning (DL) has been used to address different challenges in different
domains, such as in Healthcare. Healthcare data includes various types of data,
such as electronic health records (EHR) and raw signal values collected by am-
bient and wearable sensors as time-series. By integrating and fusing distributed
and heterogeneous data, the complementarity of the multimodality is leveraged
to acquire a consistent and accurate understanding of the situation. However,
few studies have attempted to combine static and dynamic data, and most of
them are focusing on the prediction of a specific disease.

Humans need to understand Al capability and effectively calibrate their trust.
For building trustworthy clinical decision support systems, the model should be
explainable and transparent through justifications. The main input of the clinical
models are temporal data, but temporal explanations [10] is an unexplored and
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challenging task. A limited number of explainable clinical early warning systems
that provide formal explanations have been developed and primarily focus on
feature importance [12,5]. Also, to the best of our knowledge, limited work has
been done to combine static and dynamic information of the casualties for early
warning systems, let alone to be enriched with explanations.

This paper presents work in progress from ongoing research to address the
aforementioned challenges. Concretely, a Long short-term memory (LSTM) ar-
chitecture, capturing the temporal dependencies in long time series, is followed.
This RNN-based solution uses both the static and dynamic information of a
casualty for predicting hazardous situations during a MCI, assisting the medical
personnel in determining the need of medical treatment and transportation to
hospitals. Additionally, the system is enhanced with explainable capabilities by
providing indications how the model reached the final prediction by adopting
neurosymbolic Explainability Artificial Intelligence (XAI) techniques.

The rest of the paper is structured as follows. A background and related
work is provided regarding the LSTM models and existing works. Next, our
methodology is presented by means of the architecture and the explainability
aspects. Finally, we conclude the paper.

2 Background and Related Work

Recurrent Neural Networks (RNNs) are widely adopted in time-series classifi-
cation or prediction in various kind of signals, as they allow the information to
persist. RNNs are using loops for having a sort of memory. This kind of DL
models enable the sequential and time-series to be represented such as the EHR
and the long raw signal time sequences. The main disadvantage of RNNs is the
problem of vanishing gradients that hinders the knowledge to be retained for
long data sequences. LSTM models, a gated variant of RNN, can keep long-term
memory by remembering long sequences of data since. Existing works were fo-
cused on the use of DL for the temporal data representation in EHR, facing
various challenges, such as the data irregularity and data heterogeneity [11].
Mainly, RNN, LSTM and Gated Recurrent Units (GRUs) have been proposed
for their suitability in representing temporal sequences.

Regarding the Early Warning Systems in the healthcare domain, various Al-
powered solutions have been developed for predicting clinical deterioration [7].
An early detection system of heart failure onset [2] adopted a GRU model using
EHR data as input. Other LSTM-based fusion approaches detect Alzheimer’s
progression [1] and predict early tachycardia [6]. Although temporal data entail
several challenges, the opacity of the model is equally important as DL mod-
els are black-box models. Neurosymbolic XAI [3] can make black-box models
transparent leveraging the inherent self-explainability of symbolic knowledge.
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Fig. 1. Multimodal LSTM for decision support in pre-hospital life support in MClIs

3 Methodology

The proposed method provides situational awareness through explainable early
warnings and decisions to the medical personnel. A DL-based approach is pre-
sented that weaves information from disparate modalities aiming at supporting
medical personnel in the important decision for hospitalizing an MCI victim.
The main modalities are Photoplethysmography (PPG), Blood Pressure (ABP),
Respiratory Rate (RR), and Oxygen Saturation (SpO2).

A Multi-Source Information Fusion Engine integrates multiple sources and
fuse data in an abstract way, aiming at detecting complex situations. We propose
a LSTM-based multimodal DL algorithm for classifying the sensor data and the
EHR. Our methodology combines dynamic and static data. About the dynamic
data, the victims, e.g. first responders, are wearing equipment with sensors that
are measuring time series. Static data include demographics, comorbidities and
medication. For combining static and dynamic data, the LSTM is amalgamated
with a feed-forward network. The static information is processed on a separate
feed-forward network whose hidden state is concatenated with the hidden lay-
ers of the LSTMs. The late fusion scheme is applied as all the modalities are
processed in different pipelines. Each modality is a physiological signal, thus pro-
cessed by a LSTM model for capturing the temporal dependencies and extract
patterns. The outputs of the LSTMs are concatenated and used by a softmax
layer, a probability distribution over the classes, for making the final prediction.
The prediction could be hazardous situations such as (i) respiratory failure, (ii)
need for hypoventilation (iii) an onset of a medical emergency such as sepsis (iv)
Cushing reflex, a serious situation usually seen in acute head injuries. The flow
of our methodology is depicted in Figure 1.

The overall architecture is depicted in Figure 2. A pre-processing is performed
for cleaning noisy and undesired signals, the data are segmented into fixed-size
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Fig. 2. The proposed architecture.

sliding windows, and then a feature generation is applied. Then, the features are
sent as input to a multi-class classification algorithm that classifies the casual-
ties into multiple classes by predicting risky situations. If a risky situation for a
casualty is predicted as imminent, an early warning is sent to the medical per-
sonnel to incorporate it into their decisions about hospitalization and the level
of hospital care that the casualty should receive.

One of the key features of our decision support system is that it is imbued
with explainable capabilities which are prominent aspects in a multimodal envi-
ronment. In order to foster an interpretable decision system, our neural system
is endowed with symbolic functionalities forming a neuro-symbolic system. For
providing symbolic justifications, a hidden layer analysis is performed for com-
prehending the concepts extracted by each activation node. A similar approach
with the work of [4] is followed by using linear classifiers, known as probes, to be
mapped to the intermediate layers running independently from the main model.
Those probes are predicting whether a given concept was recognized by the
model. The concepts entailed by the probes are mapped to ontology concepts
through semantic annotation by populating knowledge graphs in a similar man-
ner with the a mapping network approach [9] aligning artificial neural networks
with ontologies. The knowledge graphs represent personalized patient data, in-
formation about diseases and clinical terminology leveraging ontologies, such as
the SNOMED-CT? and ICD10%.

4 Conclusion and Future Work

This paper presented a preliminary work on the development of an explainable
Early Warning System that captures heterogeneous sources of a patient during a
MCI. A LSTM-based architecture has been designed that amalgamates the static

3 http://bioportal.bioontology.org/ontologies/ SNOMEDCT
4 https://bioportal.bioontology.org /ontologies /ICD10
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and dynamic data of the casualty in a novel way and yields early warnings. By
integrating the neural system with knowledge graphs, those early warnings are
accompanied with explanations since symbolic approaches are inherently white-
boxes. As next steps, we are working on finalising the implementation and testing

the framework on real-world use cases®.
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