
This is the accepted version of the paper. The final version of the paper can be found at
https://ieeexplore.ieee.org/document/9850317

IEEE copyright notice: 978-1-6654-9952-1/22/$31.00 ©2022 IEEE

To cite this work: A. Papoutsis, C. Iliou, D. Kavallieros, T. Tsikrika, S. Vrochidis and I. Kompatsiaris, ”Host-based Cyber
Attack Pattern Identification on Honeypot Logs Using Association Rule Learning,” 2022 IEEE International Conference on
Cyber Security and Resilience (CSR), 2022, pp. 50-55, doi: 10.1109/CSR54599.2022.9850317.

Host-based Cyber Attack Pattern Identification on
Honeypot Logs Using Association Rule Learning

Angelos Papoutsis, Christos Iliou, Dimitris Kavallieros, Theodora Tsikrika,
Stefanos Vrochidis, and Ioannis Kompatsiaris

Information Technologies Institute, CERTH, Thessaloniki, Greece
{apapoutsis,iliouchristos,dim.kavallieros,theodora.tsikrika,stefanos,ikom}@iti.gr

Abstract—Attack pattern identification is a significant step
for protecting organisations from cyber-threats, as it can be
used to reveal valuable patterns, enabling the better detection
and analysis of the respective attacks that can be leveraged for
the development of effective and efficient Intrusion Detection
Systems. In this work, Association Rule Learning (ARL), a
data mining technique, is used for the identification of attack
patterns from data collected from a public honeypot. Using the
FP-Growth ARL algorithm, we identified different patterns of
attacks and correlated the respective commands executed by
various attackers. To our knowledge, this is the first time ARL
has been used to extract attack patterns from commands run by
the attackers using real-world log data collected at the host level.

Index Terms—cyber-attack patterns, machine learning, rule-
based learning, pattern identification, attack command correla-
tion, honeypots, Dionaea, host-based log data

I. INTRODUCTION

Nowadays, cyber-attacks have evolved in both complexity
and diversity, with attackers using sophisticated and compu-
tationally powerful techniques to cause operational damage
to organisations and individuals. To protect their assets, the
affected parties leverage in their daily operations defence sys-
tems such as Intrusion Detection Systems (IDS), i.e., programs
or devices that scan a system or network and detect potentially
malicious actions [1]. However, due to the considerably high
and continuously increasing number of cyber-attacks, cyber-
security is not a trivial task, as it requires the allocation of a
significant amount of human and monetary resources [2].

Towards cyber-security against such attacks, attack pattern
identification can play an important role as it can reveal
patterns followed by attackers, enabling the better detection
and analysis of the respective attacks. To this end, data mining
techniques can be used to analyse large amounts of data
and reveal the underlying patterns of attacks, thus providing
valuable insights that can be leveraged for the development
of effective and efficient IDS [3]. One such data mining
method that can be employed for attack pattern identification
is Association Rule Learning (ARL) [4]–[6], a method that is
also considered as unsupervised machine learning [7].

ARL is part of a more extensive family of rule learning-
techniques used in the cyber-security domain for rule-learning
based IDS [6], either for descriptive rule learning focusing
mainly on pattern identification on specific datasets without

any assumption about new data, or for predictive rule learning
capable of predicting rules that generalise to new data [8], [9].

Different research efforts have used ARL methods for rule-
learning based IDS operating either on the network or host
environment of an infrastructure. Such efforts use publicly
available datasets of raw network binary TCP data1 [3], or
combine data from various sources collected at host level,
such as IDS, firewall, and system logs [10]. Data collected
from hosts can be used to obtain richer information about
the behaviour of attackers (such as specific commands that
they run) which can then be used to extract more advanced
intelligence about their actions [10].

Thus, in this work, we take advantage of the effectiveness
of ARL in pattern identification and focus on host-based logs,
since more advanced attack patterns can be extracted from
them, when compared to network-based data. Different from
current approaches that extract generic attack patterns from
host-based logs (such as DDoS attacks), this work focuses
on extracting patterns from the specific commands of the
attackers. Specifically, we collected data using a Dionaea
honeypot2 deployed publicly on a cloud Virtual Machine (VM)
on Amazon Web Services (AWS)3. These data include logs
from several services provided by Dionanea, with only the
MSSQL service though being supported in a way that allows
high level interactions from attackers (i.e., supporting different
commands run by the attackers). Using the FP-Growth ARL
algorithm [11], we recognised several attack patterns given that
a large set of real-world data (many attack events for nearly a
month) was used. To our knowledge, this is the first time ARL
is used to extract patterns from commands run by attackers on
a honeypot and build correlations of these attack commands
using real-world host-based log data.

The rest of this paper is structured as follows. Section II
presents related work on attack pattern identification. Section
III presents the methodology followed regarding data collec-
tion, command extraction, and the ARL algorithm we used.
Section IV presents the evaluation procedures followed in the
conducted experiments, the metrics used, and the constructed
dataset. Section V presents our experimental results. Last,
Section VI discusses our main findings and conclusions.

1http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html
2https://github.com/DinoTools/dionaea
3https://aws.amazon.com/

II. RELATED WORK

Various research efforts have used ARL-based methods to
address the problem of attack pattern identification. For exam-
ple, a framework to detect network intrusion using association
rules was proposed [3] where the rules were generated with
the use of a modified version of the Apriori algorithm [12] and
audit data (TCP data) derived from the KDD intrusion detec-
tion contest dataset. The constructed rules were then employed
by an anomaly detection system to recognise intrusions.

The Apriori algorithm was also used for extracting attack
patterns by analysing traffic destined to unused Internet ad-
dresses [13]. More specifically, different characteristics of the
data were analysed, e.g., the packets distribution or its used
transport, network, and application layer protocols. Threats
and their correlations were also analysed, with denial of
service attempts, buffer overflow exploits, and unsolicited
VPN access being the most severe threats found.

In [14], an automatic way was proposed to reduce the false
alarms of a Network IDS, with the use of the FP-Growth
algorithm [11] and honeypot log similarity analysis on three
months of data collected from a deployed honeypot. With
these techniques only suspicious traffic would be present in
the honeypots, resulting in the false alarms being reduced. In
particular, mainly malware behaviour and DDoS attacks were
identified, but not specific patterns regarding the commands.

In [10] association rules were extracted from multi-source
security logs (e.g., snort, firewall, and system logs) captured in
a cloud environment to identify attackers’ intrusion behaviour.
Data were gathered through simulation of intrusion attacks.
The Adaptive-Miner algorithm [15] based on Apache Spark
was used to built a security log rule base for intrusion de-
tection and vulnerability assessment and lower the complexity
generated by the different logs being analysed. On this base,
different security rules were identified and also a distributed
association rule mining-based MapReduce calculation model
was developed for efficient implementations. The system was
evaluated for real-time network intrusion detection and, despite
some delay in the recognition, the approach was better than
other methods in terms of precision, recall, and f-measure.

Contrary to aforementioned research, we focus our analysis
on the specific commands that the attackers run, collected from
host systems where richer information about attacks can be
found (such as SQL commands), as opposed to network data.
Also, in our work, we use a recently collected dataset, an
important aspect in this line of research, as the cyber-attack
landscape evolves continuously and new attacks appear.

III. METHODOLOGY

This section describes the methodology of the approach
proposed in this work for the identification of attack patterns
using an ARL algorithm on commands executed at the host
level. Initially a honeypot implementation is used for attracting
attacks by malicious actors, while an agent that operates on
the honeypot monitors continuously the various log paths and
identifies any new log entry in real-time. Then, these log data
are stored and analysed for the detection of important features

of an attack and some preprocessing steps are also applied.
Last, these logs are analysed by an ARL algorithm.

A. Data Collection

To gather data, we utilise a honeypot implementation. Hon-
eypots can mimic the behaviour (e.g., the services) of a typical
system and therefore, in the view of attackers, honeypots are
just another endpoint that can be attacked; however, honeypots
are not actual systems and can lure attackers into performing
malicious actions [16]. After extensive research, we decided to
use the Dionaea honeypot deployed on a cloud VM located on
the AWS platform. Dionaea has many benefits, including sup-
port for configurations that store only high level information
about the attacks excluding specific details to reduce noise,
while it can also store information about the attacks in JSON
format, facilitating any further preprocessing steps.

To store the data from Dionaea and extract the relevant
attack information, the Wazuh4 security platform was used.
Wazuh is a free, open-source security monitoring solution
for threat detection, incident response, and compliance, which
consists of (i) the Wazuh manager responsible for storing and
analysing the data, and (ii) the Wazuh agent responsible for
collecting the data from the target host; more than one agents
can be registered (i.e., connected) to one manager. To allow
for the collection of the data from Dionaea, a Wazuh agent
is installed on the same VM where the Dionaea honeypot is
installed. The agent periodically monitors Dionaea’s logs and
returns any new log entries to the Wazuh manager. The latter
analyses the gathered logs to extract attack information.

Specifically, the Wazuh manager analyses the data collected
in Dionaea using rule-based techniques (e.g. regular expres-
sions) to extract information that provides insights concerning
the attackers (e.g., IP address, source port, browser agent
version) and the cyber-attack itself on the honeypot (e.g.,
destination IP and port). After identifying incidents, the rele-
vant information is stored in JSON format. Then, periodically,
all data collected up to a certain point are used as input
to the ARL module that uses the FP-Growth algorithm for
identifying patterns and correlations of attacks from these data.

B. Command Extraction

Different attributes can provide information about a cyber-
attack, such as the commands executed by attackers or the
systems ports targeted during the attack. By analysing the gath-
ered data, we identified that not all attributes entailed informa-
tion that can be used to extract useful patterns from attacks.
Several of the services provided by the Dionaea honeypot (e.g.,
FTP, SMB, MongoDB, HTTP, etc.) were not fully supported,
thus the collected commands were limited. Therefore, in our
work, we used the following attributes: (i) the data.cmd,
which describes the SQL commands used by attackers, (ii)
the data.connection.protocol which defines the protocol used
by attackers, and (iii) the data.connection.local.port which
describes the system connection port that attackers targeted.

4https://wazuh.com/

The data.cmd entails long sequences of SQL commands.To
construct shorter and eventually clearer rules, every sequence
of SQL commands is separated into multiple commands based
on different keywords that depict common SQL commands
executed by different attackers, such as the “EXEC” keyword
which is used to “execute” a selected procedure. Examples
of such keywords include ”EXEC”, ”exec” ”DECLARE”,
”SELECT”, ”Drop”, and ”Create”. For example, the following
sequence of SQL Commands captured by our honeypot:

{exec sp server info 1 exec sp server info 2
exec sp server info 500 select 501,NULL,1
where ’a’=’A’ select 504,c.name,c.description,c.definition
from master.dbo.syscharsets c,master.dbo.syscharsets c1,
master.dbo.sysconfigures f where f.config=123 and
f.value=c1.id and c1.csid=c.id set textsize 2147483647

set arithabort on}

is split into the following five different SQL commands:
(i) exec sp server info 1

(ii) exec sp server info 2
(iii) exec sp server info 500
(iv) select 501,NULL,1 where ’a’=’A’
(v) select 504,c.name,c.description,

c.definition from master.dbo.syscharsets
c,master.dbo.syscharsets c1,master.dbo.sysconfigures f
where f.config=123 and f.value=c1.id and c1.csid=c.id
set textsize 2147483647 set arithabort on}

After these steps, all attributes are fitted to our ARL method.

C. Pattern Identification using ARL

ARL has been applied to different domains with the goal to
derive interesting patterns and correlations between variables
in a database. Consequently, ARL can also be used to reveal
interesting patterns in attackers’ actions [17], where ARL
along with sequential rules are the main techniques that have
been applied for intrusion detection [18].

ARL was first proposed in commercial environments to
model customers’ purchasing behaviour [4]. In such settings,
the products a customer buys are stored as objects that can
be considered as distinct items and the main goal is to
identify sets of items that are usually purchased together; these
are expressed as rules. The same logical procedure can be
transferred to the cyber-security domain where a command
that an attacker executes can be viewed as an item and the
final goal is the identification of items (e.g., commands) that an
attacker executes together. As a result, attack patterns followed
by attackers can be identified by correlating the executed
commands. These attack patterns can be used either as part
of an IDS to facilitate the detection of the attacks [10] or to
further analyse the behaviour of attackers and extract insights.

In ARL, an itemset is a group of two or more objects (i.e.,
items) that appear together. If an itemset appears frequently
over a specified threshold known as support, it is considered
to be a frequent itemset (also known as candidate itemset)
or frequent pattern [13]. A rule that depicts the correlation

between different items can be expressed in the form of an
If-Then structure. The if and then parts are generally known
as antecedent and consequent, respectively. For example, let’s
consider three different commands (i.e., items): A, B, and C.
A rule can be expressed in the form: If A and B, then C. This
rule states that if commands A and B are executed together,
command C is also executed with some probability [3].

In this work, we used the FP-Growth algorithm [11], which
has many advances over the popular Apriori algorithm [12].
Apriori starts by identifying all unique items (length of one)
in a database and then follows an iterative process to find all
itemsets that have support value equal or higher to a predefined
threshold, so that frequent patterns of length two or more are
used for generating the association rules; a rule can then be
identified between the items of a frequent pattern or between
different frequent patterns. The length of the rule depicts the
number of commands (i.e, items) that a rule entails from the
left side (antecedent part) to the right side (consequent part).
In our datasets, we identify length of commands from 2 to 10,
as a unique command cannot be considered as rule by itself.

However, Apriori suffers from two main drawbacks: (i) the
number of candidate itemsets at each iteration can become
very large, thus adding complexity as more rules are generated
and need to be eventually analysed by security experts, and (ii)
the whole database must be scanned at each iteration, adding
computational complexity that depends on the length of the
longest mined frequent itemset. Thus, Apriori presents high
memory consumption and execution time, especially for large
datasets. On the other hand, FP-Growth does not generate can-
didate itemsets. Instead, it uses a tree-based representation of
the original dataset, known as FP-tree, from which the frequent
itemsets are mined. The fact that no candidate generation is
needed and that the database is scanned twice in total addresses
the two main drawbacks of Apriori.

Overall, ARL is a good candidate for our problem, as it can
identify attack patterns without time-consuming and complex
prepossessing steps, which is particularly important in the
modern, complex cyber-security landscape, while FP-Growth
can assist in finding many attack patterns on large datasets
without the drawbacks of the Apriori algorithm.

IV. EXPERIMENTAL SETUP

A. Dataset

The data were captured continually for 25 days from 2022-
02-04 to 2022-02-28. Every 24 hours we built a different
dataset, thus ending up with 25 datasets. The length of the
datasets varies depending on the traffic that the honeypots
attracted, with each dataset being composed of different sam-
ples and attributes. Each sample in our dataset represents a
security incident in the deployed honeypot. Table I depicts
the characteristics of the captured datasets regarding the SQL
commands executed by attackers.

B. Evaluation Methodology

As this research aims to extract attack patterns from the
commands executed at the Dionaea honeypot, we initially

TABLE I
DATASETS COLLECTED IN THE DIOANEA HONEYPOT FOR 25 CONTINUOUS DAYS

Dataset 1 2 3 4 5 12 13 14 15 16 17 18
SQL Commands # of samples 1496 2033 1767 1290 462 882 1494 1631 1768 1141 1427 883

of unique 130 154 142 121 85 102 130 136 160 115 127 103

extract the commands of each attack from each generated
dataset and then this information, along with the respective
protocol and port are used, as input to the ARL module for
the extraction of the respective attack patterns.

In our experiments, we used the FP-Growth implementation
in the mlxtend library5. The representation of the raw data
is performed using the pandas library6, where each collected
dataset is considered as a dataframe, each sample as a
dataframe’s row, and each attribute as a dataframe’s feature; in
the remaining paper, these terms will be used interchangeably.

However, not all datasets, each collected during a 24-hour
period, were useful for our experiments. For example, for
specific days, some datasets had little attack information as
our honeypot did not attract enough traffic, while others had
enough information, but not of interest to us, such as SQL
commands. Overall, among the 25 datasets, only 12 (depicted
in Table I) were useful to us. For our experiments, we first
concatenated these datasets into one with a length of 16472
entries (i.e, SQL commands). From this dataset, we extacted
259 frequent itemsets using a support of 0.15%, meaning that
259 sets of items occur together in at least 15% of all items.

C. Evaluation Metrics

In ARL, different rules can be generated depending on the
dataset size and the complexity of commands executed by
attackers. To select specific rules, different metrics can be used
[19], [20]. In this work, we consider the following metrics: (i)
Support ∈ {0, 1} of an itemset X defined as the proportion
of transactions in the dataset that contain the itemset, showing
how many times a generated rule appears in a dataset [12];
(ii) Confidence ∈ {0, 1} showing the percentage of cases in
which a consequent Y appears, given that the antecedent X
has occurred, thus measuring the reliability of the rule; it is
calculated as the number of transactions containing X and Y ,
divided by the number of transactions containing X [4]; and
(iii) Lift ∈ {0,∞} showing the ratio of the interdependence
of the observed values, i.e, the ratio of observed support to
expected support if X and Y were independent; if the lift is
equal to one, the rule and the items are independent, since no
statistically proven relationship is shown, while if the lift is
more than one, it indicates a higher dependency [21].

V. RESULTS

In this section, we present the results of the experiments on
our dataset using the FP-Growth algorithm. Despite the fact
that we gathered data for nearly a month, we identify patterns
and correlations only between SQL commands given that the

5https://rasbt.github.io/mlxtend/user guide/frequent patterns/fpgrowth/
6https://pandas.pydata.org/

Dionaea honeypot does not allow users (including attackers)
to execute all types of commands, but mainly SQL commands.

Based on the identified frequent itemsets, we generated 6020
rules. We filtered these rules using the confidence metric to
keep rules that depicted high reliability; by only considering
rules with a confidence of 1, we ended up with 3031 rules.
Finally, we deleted rules that had lift of 1, as these depict
no correlation and cannot considered as useful. Therefore,
these evaluation metrics were used to identify rules having
a strong relationship between their items (i.e., one item was
executed with high probability along with another item) and
eventually reduce the number of generated rules thus lowering
the complexity accompanying such large numbers of rules.

Table II presents examples of generated rules (not all rules
are shown due to space limitations). More specifically, four
rules with the highest lift value (i.e., 6.57) and two rules
with the lowest lift value (i.e., 5.3) are depicted. Figure 1
depicts the different values of the lift metric. The higher the
lift value, the stronger the rule is stronger dependency between
the antecedent and consequent parts). From these rules, we can
evaluate actions of attackers that are executed together and in
a particular sequence. For example the first rule in Table II
indicates that if one attacker executes the commands:

1) EXEC sp_OASetProperty,
@objFull,’ControlFlags’,4

2) Create, ’WbemScripting.SWbemLocator’,
@objLocator, OUTPUT

then the attacker will execute with high probability the fol-
lowing commands:

3) EXEC sp_OAMethod,
@objWmi,’Get’,@objFull,
OUTPUT,’Win32_SecurityDescriptor

4) EXEC sp_OAMethod, @objLocator,
’ConnectServer’,@objWmi,OUTPUT,’.’,
’root\\cimv2

So with the lift values, we can infer that commands 3, 4 are
more likely to be executed together with commands 1, 2 rather
than commands 1, 2 to be executed alone. More specifically,
in this example, commands 3, 4 are nearly 7 times more likely
to be executed together with commands 1, 2. In other words,
lift declares that the presence of commands 1, 2 increases the
probability that the commands 3, 4 will be executed. Table II
depicts also confidence of 1 on each rule, i.e, if the command
on the left part of the rule is present, then the specific
command on the right part will follow 100% of the time.

Such generated rules depict sequences of commands exe-
cuted by different malicious actors in their attempt to achieve
a specific goal, such as to gain access to the system by

TABLE II
RULES GENERATED BY ARL THAT INDICATE THE ATTACK PATTERNS FOLLOWED BY THE ATTACKERS

Antecedents Consequents Confidence Lift
EXEC sp OASetProperty @objFull,
’ControlFlags’,4,
Create ’WbemScripting.SWbemLocator’,
@objLocator OUTPUT

”EXEC sp OAMethod @objWmi,’Get’,
@objFull OUTPUT,’Win32 SecurityDescriptor’ ”,
”EXEC sp OAMethod @objLocator,
’ConnectServer’,@objWmi OUTPUT,’.’,’root\\cimv2’ ”

1 6.57

”Create ’WbemScripting.SWbemLocator’,
@objLocator OUTPUT ”
’mssqld’

’1433.0’,
”EXEC sp OAMethod @objWmi,’Get’,
@objFull OUTPUT,’Win32 SecurityDescriptor’ ”,
”EXEC sp OASetProperty @objFull,
’ControlFlags’,4 ”,
”EXEC sp OAMethod @objPermiss,
’SetSecurityDescriptor’,NULL,@objFull ”,
”EXEC sp OAMethod @objLocator,
’ConnectServer’,@objWmi OUTPUT,’.’,’root\\cimv2’ ”

1 6.57

”Create ’WbemScripting.SWbemLocator’,
@objLocator OUTPUT ”,
”EXEC sp OAMethod @objPermiss,
’SetSecurityDescriptor’,NULL,@objFull ”,
”EXEC sp OAMethod @objWmi,’Get’,
@objFull OUTPUT,
’Win32 SecurityDescriptor’ ”

”EXEC sp OAMethod @objLocator,
’ConnectServer’,@objWmi OUTPUT,’.’,’root\\cimv2’ ” 1 6.57

’Drop Procedure sp password ’,
”Create ’WbemScripting.SWbemLocator’,
@objLocator OUTPUT ”,
”EXEC sp OAMethod @objPermiss,
’SetSecurityDescriptor’,NULL,@objFull ”,
”EXEC sp OAMethod @objWmi,’Get’,
@objFull OUTPUT,’Win32 SecurityDescriptor’ ”

”EXEC sp OASetProperty @objFull,
’ControlFlags’,4 ”,
”EXEC sp OAMethod @objLocator,
’ConnectServer’,@objWmi OUTPUT,’.’,’root\\cimv2’ ”,
’mssqld’

1 6.57

...
”EXEC sp OAMethod @objPermiss,
’SetSecurityDescriptor’, NULL,@objFull ”,
”EXEC sp OAMethod @objWmi,’Get’,
@objFull OUTPUT,’Win32 SecurityDescriptor’ ”,
”EXEC sp OASetProperty @objFull,’ControlFlags’,4 ”

Drop Procedure sp password ’, ’mssqld’ 1 5.3

”EXEC sp OAMethod @objLocator,
’ConnectServer’,@objWmi OUTPUT,’.’,’root\\cimv2’ ’Drop Procedure sp password ’, ’1433.0’, ’mssqld’ 1 5.3

e.g., first creating an object and then retrieving the security
properties of that object. Thus, such rules are very valuable as
they can be used by security analysts to identify repeatable
attack patterns and consequently assist them in developing
the appropriate defence measures against them for protecting
their organisation. Hence, the use of ARL in the current attack
landscape is particularly beneficial as it can generate patterns
of attacks by analysing large-scale data which is crucial given
the high and continuously increasing number of daily attacks.

Overall, we identified several patterns and correlations of
commands. The number of generated rules depends on the
size of the captured dataset and the attacks information used.
For example, we used 12 datasets and three different attributes
of an attack; depending on research objectives, less or more
attack information (attributes) can be used. The final rules that
can be used for further analysis also depend on the research
needs. In other situations, for example, it is probably beneficial
to pay more attention to the frequent item generation part and,
more specifically, to the rules’ length specified at this stage,
since an analyst may be interested in lengths that entail many
commands, and thus filters the final rules accordingly.

In addition, this work generated 259 frequent itemsets,
while someone may be interested to generate more itemsets to
explore even rare or hidden patterns. This can be achieved with

the use of the support metric; the lower the value of support,
the more the generated frequent itemsets and eventually the
more the rules that get generated. However, this increases both
the computational complexity, as more memory resources are
needed, and the analysis effort by a security expert as many
rules must be evaluated for their usability.

Finally, in this work, we joined the data of different days to
extract rules from a unified dataset, rather than extract rules
from distinct datasets. This may not always be possible though,
as unified datasets can increase the memory requirements
and complexity of the ARL methods. This is a well known
drawback of ARL and different research efforts have tried
to deal with it [22], [23]. In such cases, the extraction of
rules from distinct datasets would probably be preferable, but
more extensive and diverse datasets can arguably lead to more
conclusions about attackers’ actions.

VI. CONCLUSIONS

In this work, we proposed a framework for identifying
attack patterns and building correlations of commands from
real attackers targeting a public honeypot by utilising an ARL
algorithm and a honeypot. To our knowledge, this is the
first time ARL has been used to extract attack patterns from
commands executed by attackers using real-world log data

Fig. 1. Distribution of lift values of rules

collected at the host level. We gathered attack data for nearly a
month (25 days). In order to determine the attackers’ patterns,
we use several characteristics of their attacks, such as the
SQL commands they executed, the connection protocol they
used, and the connection port they targeted. The results derived
from the experiment were evaluated using different evaluation
metrics, namely support, confidence, and lift. The results
showed that the ARL procedure is suitable for identifying
different attackers’ actions as the generated rules reveal several
attack patterns. Our next step is to map the generated rules to
the MITRE ATT&CK framework to allow for (i) the better
organisation of the extracted information, thus facilitating the
identification of the general behaviour and motivation behind
the attacks patterns that we identified, and (ii) the storage of
the collected intelligence in a format that can more easily be
shared and exploited by other organisations. In addition, as our
dataset is constantly updated with new data, we plan to utilise
datasets of more extended periods and analyse the trends in the
detected patterns and behaviour of attackers. Finally, besides
the real-world host-based data used in this work, we also plan
to use network-based data to reveal additional attack patterns.

ACKNOWLEDGMENT

This work was supported by the FORESIGHT (H2020-
833673) and ECHO (H2020-830943) projects, funded by the
European Commission.

REFERENCES

[1] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications surveys & tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[2] M. H. Nasir, S. A. Khan, M. M. Khan, and M. Fatima, “Swarm
intelligence inspired intrusion detection systems—a systematic literature
review,” Computer Networks, p. 108708, 2022.

[3] F. S. Tsai, “Network intrusion detection using association rules,” Inter-
national Journal of Recent Trends in Engineering, vol. 2, no. 2, p. 202,
2009.

[4] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the 1993
ACM SIGMOD international conference on Management of data, 1993,
pp. 207–216.

[5] M. Husák, J. Kašpar, E. Bou-Harb, and P. Čeleda, “On the sequential
pattern and rule mining in the analysis of cyber security alerts,”
in Proceedings of the 12th International Conference on Availability,
Reliability and Security, 2017, pp. 1–10.

[6] Q. Liu, V. Hagenmeyer, and H. B. Keller, “A review of rule learning-
based intrusion detection systems and their prospects in smart grids,”
IEEE Access, vol. 9, pp. 57 542–57 564, 2021.

[7] K. Sindhu Meena and S. Suriya, “A survey on supervised and unsu-
pervised learning techniques,” in International Conference on Artificial
Intelligence, Smart Grid and Smart City Applications. Springer, 2019,
pp. 627–644.

[8] J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of rule learn-
ing. Springer Science & Business Media, 2012.

[9] J. Fürnkranz and T. Kliegr, “A brief overview of rule learning,” in
International symposium on rules and rule markup languages for the
semantic web. Springer, 2015, pp. 54–69.

[10] P. Lou, G. Lu, X. Jiang, Z. Xiao, J. Hu, and J. Yan, “Cyber intrusion
detection through association rule mining on multi-source logs,” Applied
Intelligence, vol. 51, no. 6, pp. 4043–4057, 2021.

[11] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM sigmod record, vol. 29, no. 2, pp. 1–12, 2000.

[12] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215.
Citeseer, 1994, pp. 487–499.

[13] C. Fachkha, E. Bou-Harb, A. Boukhtouta, S. Dinh, F. Iqbal, and
M. Debbabi, “Investigating the dark cyberspace: Profiling, threat-based
analysis and correlation,” in 2012 7th International Conference on Risks
and Security of Internet and Systems (CRiSIS). IEEE, 2012, pp. 1–8.

[14] C.-B. Jiang, I.-H. Liu, Y.-N. Chung, and J.-S. Li, “Novel intrusion
prediction mechanism based on honeypot log similarity,” International
Journal of Network Management, vol. 26, no. 3, pp. 156–175, 2016.

[15] S. Rathee and A. Kashyap, “Adaptive-miner: an efficient distributed
association rule mining algorithm on spark,” Journal of Big Data, vol. 5,
no. 1, pp. 1–17, 2018.

[16] S. Kumar, B. Janet, and R. Eswari, “Multi platform honeypot for
generation of cyber threat intelligence,” in 2019 IEEE 9th International
Conference on Advanced Computing (IACC). IEEE, 2019, pp. 25–29.

[17] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, “An intrusion-
detection model based on fuzzy class-association-rule mining using
genetic network programming,” IEEE transactions on systems, man, and
cybernetics, part C (Applications and Reviews), vol. 41, no. 1, pp. 130–
139, 2010.

[18] K. M. M. Aung and N. N. Oo, “Association rule pattern mining
approaches network anomaly detection,” in Proceedings of 2015 Interna-
tional Conference on Future Computational Technologies (ICFCT’2015)
Singapore, 2015, pp. 164–170.

[19] J. M. Luna, M. Ondra, H. M. Fardoun, and S. Ventura, “Optimization
of quality measures in association rule mining: an empirical study,”
International Journal of Computational Intelligence Systems, vol. 12,
no. 1, p. 59, 2018.

[20] M. Hahsler, “A probabilistic comparison of commonly used interest
measures for association rules,” United States. Southern Methodist
University, 2015.

[21] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in Proceedings
of the 1997 ACM SIGMOD international conference on Management of
data, 1997, pp. 255–264.

[22] H. Li and P. C.-Y. Sheu, “A scalable association rule learning heuristic
for large datasets,” Journal of Big Data, vol. 8, no. 1, pp. 1–32, 2021.

[23] S. Patel Tushar, P. Mayur, L. Dhara, K. Jahnvi, D. Piyusha, P. Ashish,
P. Reecha, S. Tushar, P. Mayur, and L. Dhara, “An analytical study of
various frequent itemset mining algorithms,” Res J Computer & IT Sci,
vol. 1, no. 1, pp. 6–9, 2013.

