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ABSTRACT

The availability of satellite images has increased due to the fast
development of remole sensing lechnology. As a resull several deep
learning change detection methods have been developed to caplure
spalial changes from mulli temporal satellite images thal are of great
importance in remote sensing, monitoring environmental changes
and land use. Recently, a supervised deep learning network called
FresUNet has been proposed, which performs a pixel-level change
detection from image pairs. In this paper, we extend this method
by inserling a Bayesian framework that uses Monte Carlo Dropoul,
molivaled by a recent work in image segmentation. The proposed
Bayesian FresUNet (BiasUNet) approach is shown to outperform
four state-of-the-art deep learning networks on Sentinel-2 ONERA
Satellite Change Detection (OSCD) benchmark dataset, both in
terms of precision and quality.
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Figure 1: Overview of change detection methods

1 INTRODUCTION

With the progress of remote sensing technology, remote sensing
platforms have become capable of collecting a wide range of data.
These available data are used as resources for Earth monitoring
by detecting changes on the land surface. Change detection is a
procedure that detects changes on the same geographical area by
observing a set of images captured during different periods. Due
to its usage in a plethora of real-world applications, such as fire
detection, environmental monitoring, disaster monitoring, urban
change analysis and land management, it has attracted the interest
of research society and several works have been published.

While the definition of term "change” may vary between ap-
plications, change detection can be considered as a well defined
classification problem, that aims to assign a binary label per pixel
based on a co-registered images pair of a given region taken at dif-
ferent times. A positive label indicates that the area corresponding
to that pixel has changed between the acquisitions, while a zero
label that there is no difference between the acquisitions. Figure 1
illustrates this binary map, with white for change and black for
no-change label.

The main challenges of change detection are (a) the semantic gap
between the low-level feature representing and high-level seman-
tics in the images, and (b) the curse of dimensionality, since visual
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descriptors usually have hundreds or even thousands of dimensions.
Furthermore, shadows or weather changes include noise or atmo-
spheric variations and make change detection a very challenging
task. Although a wide range of methods have been developed in
remole sensing dala analysis over the years, new more efficient and
accurate methods are needed.

Change detection methods are categorized into pixel-based change
detection [1, 2, 4, 6-11, 15, 15, 17, 17, 18, 22-25] and object-based
change detection [19, 21] techniques. The former attempt to iden-
lify whether or not a change has occurred at pixel level in the
co-registered images pair, whereas the latter attempt to first group
pixels that belong to the same object and then use the object’s infor-
mation (e.g., colour, and shape) to determine whether the object has
changed during time. Early change detection approaches analyzed
pixels directly using manually crafled techniques and descriptors.
However, more recent change detection methods use either unsu-
pervised deep learning [1, 4, 6, 8, 9, 11, 18, 22, 23] or supervised
deep learning [2, 7, 10, 15, 17, 24, 25] methods to generate change
maps, with the latter approach shown to perform better.

Deep learning architectures have achieved state-of-the-art re-
sults in almost all classification tasks, nevertheless they still make
over-confident decisions. Recent works apply Bayesian deep learn-
ing to Convolution Neural Networks (CNN) by adding both a mea-
sure of uncertainty and weight regularization to their predictions
to surpass this problem.

In this work, we propose a pixel-based change detection ap-
proach that involves the use of Bayesian learning for learning the
distribution of the weights of the layers of neural network, and
the use of a majority voling strategy for producing the predicted
change map of a multi temporal image pair. To the best of our knowl-
edge, this is the first deep learning approach that uses a Bayesian
framework with Monte Carlo (MC) Dropout for change detection.

The main contributions of this paper are summarized as follows:

e proposal of a novel and more effective approach for change
detection.

e cmployment of a Bayesian network with Monte Carlo Dropout
that learns weights of the layers.

e validation of the effectiveness of the proposed approach
using a benchmark Sentinel-2 dataset for different band
combinations.

The paper is structured as follows. Section 2 presents relevant
recent works and Section 3 gives details of the proposed approach.
Experimental results are presented in Section 4 and the paper con-
cludes with a brief summary in Section 5.

2 RELATED WORK

In this section, we discuss existing state-of-the-art pixel-based meth-
ods unsupervised and supervised methods proposed for change
detection.

Unsupervised methods [9] use thresholding criteria (e.g., change
vector analysis) for identifying the changed patterns. Bruzzone et
al. [8] propose two methods; the first allows the automatic selec-
tion of the decision threshold that minimizes the overall change
detection error probability, while the second analyzes the difference
image by considering the spatial-contextual information included
in the neighborhood of each pixel. In [23], the authors propose a
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method that pre-processes images with a controlled adaptive it-
erative filtering, compares multi temporal images according to a
standard log-ratio operator and generates the change detection map
by analysing of the log-ratio image. In [18], a method is presented
that combines principal component analysis and k-means clustering
to distinguish change from unchanged pixels. The deep neural net-
work learning algorithm in [6] uses auto-encoders for classification
changed pixels from unchanged ones. In [11], the authors propose
a modular, scalable, and metric free single shot change detection
method that exploits a decomposed interconnected graphical model
formulation with relaxed similarity constraints. Liu et al 5] propose
an unsupervised method that uses iterative training for learning
the latent relation between two heterogeneous images. In [4], a
change detection method is proposed that is based on keypoints
malching, evaluation, and grouping, and doesn’t require any image
co-registration. Du et al [1] propose deep slow feature analysis
model that consists of a two symmelric deep networks for pro-
jecting the input data of bi-temporal imagery, uses change vector
analysis to find unchanged pixels with high confidence as train-
ing samples and calculates the change intensity with chi-square
distance and threshold algorithm.

Supervised methods, on the other hand, require having labelled
training data. Volpi et al [10] propose a method that combines
Support Vector Machines (SVM) and contextual information for
supervised change detection. Le Saux et al [2] propose a descriptor
Change-Index Histogram of Oriented Gradients that uses SVM. In
[7], the authors propose a method based on deep neural networks
for image change detection, while in [24, 25] their methods are
based on convolutional neural network (CNN) architectures. In
[15], the authors propose an Early Fusion (EF) architecture that
concatenates the two image patches before passing them through
the network for change detection. Daudt et al [15] propose two
Siamese encoder-decoder fully convolutional (FCN) architecture
(FC-Siam-conc, FC-Siam-difl') for change detection and show that
using all available multispectral bands for change detection results
in better results. In the work [17], an encoder-decoder FCN archi-
tecture (FresUnet) for change detection is proposed that uses the
predicted land cover information to help the prediction of changes.
A relatively recent supervised Bayesian UNet architecture (BU-Net)
has been proposed in [3] for image segmentation. Authors of [13]
provide both a semantic segmentation and uncertainty maps.

Recently, some works have been published on change detection
using Bayesian framework. Specifically, Gharbi et al [20] propose
a hierarchical Bayesian model for change detection that applies
Bernoulli-based models to change detection and transforms it to a
denoising problem. Moreover, Lin et al in [12] propose a time-series-
based normalized S1 intensity image for the flooding detection
using Bayesian probability functions to decrease and increase the
backscattering intensity. Unlike traditional methods, the weights of
a Bayesian network can have a wide range of values and learn more
accurately the data distribution. Moreover, from the literature can
be observed that Bayesian models are usually preferred in difficult
problems [3, 12, 14, 20] because they use probability for uncertainty
model representations as well as the uncertainty of the output of
the model.
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Figure 2: Framework of the proposed method.

Conlrary to these approaches, we propose a supervised Bayesian
encode-decoder FCN model for change detection. From our knowl-
edge, this work is the first FCN architecture that contains MC
Dropout for change detection. Therefore, inspired by the technique
described in [3], we proceed with applying MC Dropout and ma-
jority voting to learn change maps for change detection problem.

3 METHODOLOGY

The proposed method belongs to FCN architectures that learn to
perform change detection solely from change detection datasets
without pretraining or transfer learning from other datasets. Similar
to the state-of-the-art FCN methods [15, 17], the approach works
with patches in order to improve accuracy and speed without af-
fecting significantly the training times. This approach can receive
variable number of neurons in its input layer, thus making it more
flexible, given the appropriate memory.

Figure 2 shows an overview of the proposed fully convolutional
architecture for change detection. The Offline phase corresponds
to the training procedure, whereas the online phase corresponds to

the testing procedure. The structure of network is the same both
for the training and the testing phases.

In the training phase, the method concatenates the two patches
before passing them through the network and feeds the output
to the encoder-decoder FCN BiasUNet network. After that, the
concatenated patch goes through alternating Bayesian residual
blocks and Bayesian subsampling residual blocks for four layers in
the encoder part. The outcome passes through alternating Bayesian
residual blocks and Bayesian upsampling residual blocks for four
layers in the decoder part. There are skip connections between
Bayesian residual blocks from encoder part to decoder part for
keeping spatial details that are present in the earlier layers of the
network and producing more accurate class prediction. Next, it uses
a convolution layer with kernel size 1 and a log softmax activation
function for producing the change map of the multi-temporal patch
pair. Finally, it uses cross entropy loss to compute the score between

outcome and ground truth patch and this value is fed to the network.

According to the testing phase, the method concatenates the
patches and feeds them to the BiasUNet. In contrast to the training
phase, each concatenated input goes through the network for a
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Figure 3: Encoder part architecture of FresUNet.
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small number of passes and applies majority voling function to the
outcomes to produce the predicted change map of the patch pair.

3.1 Notation

Let 7 be the set of image pairs of size | 7| = N. Each instance [; of
I consists of an image pair (I:‘, I'.l") that is captured from the same
location at different times ty, t2, respectively. Let M be the number
of patches that an image will be divided into. For each image 1,.' !
we define its j-th patch as Pil.li’ for j = 1,-, M. Let O be the training
set of size |O| = n = NM, with Oy its k-th instance. Each instance
Oy corresponds to a patch image pair (P"‘j, ng) from images I,

12’, respectively. We also denote with Q = (1{,‘, 1{,’) an image pair

for testing and let (Pfl‘j, P‘;ZI.) be the j-th patch pair. We denote with

CM;, CM:.J " the predicted and ground truth change map of image
pair I; with CM; j, C‘MZ; the j-th pixel of each, respectively. Let f
be the number of total forward passes. We define with w, h, ¢ the
width, height and number of channels of each image patch. Let x
be the value of decoder output h X w X 1. We denote with z, the
random aclivation or inactivation coeflicients and M, the weight
matrix before dropout layer. Let p, be the activation probability for
r-th layer, T a threshold value of majority voting function, and ¢
an instance of online phase.

3.2 FresUNet

As the proposed method builds on FresUNet, we describe that
method first, and then outline the differences in the following
subsection. As described before, the FresUNet concatenates the
multi-temporal patches both in training and testing phase before
feeding them into the network. The concatenation is done on the
channel dimension. Therefore, starting with a patch pair (Pl.l"j, Pl.l'zj)

from images I‘.", I[.tz, each of dimensions h X w X ¢, the input to the
network will be of size h x w X 2c.

Then, the input goes through residual blocks and subsampling
residual blocks for the four layers of the encoder part. Each residual
block, as well as each subsampling residual block, consists of a
combination of convolution layers (Conv3x3), batch normalization
(BN) and ReLU functions (Figure 3).

Then, the outcome goes through residual blocks and upsam-
pling residual blocks for the four layers of the decoder part. Each
upsampling residual block consist of a combination of transpose
convolution layers (TrConv3x3), batch normalization (BN) and
ReLU functions (Figure 4).

FresUnet uses log softmax activation function (Eq. (1)) to the
output x; from decoder part to produce the predicted change map
CM;. After that it uses negative log likelihood (Eq. (2)) for updating
the weights of the network in the training phase.

M. Pegia, et al.
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Figure 4: Decoder part architecture of FresUNet.

log_softmax(x) = log( et ) (1)
k ek

z
~ a9t
nll_loss(CM;, CM;) =

C
= D (CM5l0g(CM ) + (1= CM{)log(1 ~ CM; ;)
i=1

J
(2)

3.3 BiasUNet

In the proposed framework, the input is the image patches, which
are then concatenated, and use the previous defined blocks, but
with some modifications. Inspired by the work of [3] and as already
mentioned in the section 2, we insert Bayesian learning layers to
encoder and decoder part with MC dropout layers behind each ReLU
layer and perform a little number of forward passes to network. The
dropout layers are active in both the training and the prediction
phases. MC Dropoul gives an uncerlainty for each weight maltrix
in Eq. (3):

zp ~ Bernoulli(py)
Wy = My X diag(zy)

During the prediction phase, the network receives as input a
patch image pair (Pf?‘j, P:;j), performs f forward passes of the input,

)

and gets S = {CM,I}:;{. a set of |§| = f log softmax outputs. The
Bayesian model produces different predictions for the same input
data, since the weights are sampled from a distribution. Next, a
majority voting function (Eq. (4)) is applied to the predictions to
compute the final map.

majority_voting(S) = mean({CMq}::( >T) (4)

Eventually, a cross entropy loss (Eq. (5)) is used between the
predicted results and the ground truth values of each instance.

«
ce_loss(CMg, CMg') = 3" (CME"log(CMg,j)) )

J=1

4 EXPERIMENTS

In this section, we describe the dataset used for evaluation, the
performance measures, and the experimental results for different
band combinations.

4.1 Dataset

The evaluation of our method and the comparison with existing
SOTA methods is done on the widely used benchmark ONERA
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Table 1: Evaluation metrics on change detection dataset bands.

No. Bands Method Class accuracy Dice Kappa Net-accuracy Net-loss Precision Recall
(c) [no change, change]
UNet [15] [99.151,12.923]  0.20088  0.18224 94.74082 0.41417 0.45079  0.12923
SiamUNet-conc [15] [98.611,27.694]  0.36092  0.33730 94.98349 0.35196 0.41798  0.27694
3 SiamUNet-diff [15] [98.489, 25.672]  0.33405  0.30936 94.76448 0.39295 0.47804  0.25672
FresUNet [17] [96.618,52.578]  0.48837  0.45871 94.36521 0.30837 0.45592  0.52577
BiasUNet [94.853,64.191] 0.49439 0.46046 93.28461  0.27346 0.40201  0.64198
UNet [15] [99.495,23.321] 035149  0.33473 95.59858 0.38424 0.71333  0.23321
SiamUNet-conc [15] [98.681,35.137]  0.44030  0.41807 95.43091 0.34500 0.58951  0.35137
10 SiamUNet-diff [15] [99.158, 24.723]  0.35231  0.33268 95.35049 0.47696 0.61275  0.24723
FresUNet [17] [97.110,55.682]  0.53211  0.50557 94.99129 0.27646 0.50949  0.55682
BiasUNet [94.440,64.211] 0.54291 0.51858 93.10010  0.26756 0.43818  0.64211
UNet [15] [99.214,34.997]  0.46793  0.44793 95.92925 0.33623 0.70587  0.34997
SiamUNet-conc [15] [99.123,28.351]  0.39255  0.93643 95.51206 0.35407 0.63789  0.28351
13 SiamUNet-difl [15] [99.263,23.432]  0.34181  0.93403 95.38436 0.46795 0.63153  0.23431
FresUNel [17] [94.440, 68.240]  0.50291  0.46858 93.10010 0.26756 0.23818  0.68239
BiasUNel [97.379, 64.775]  0.56541 0.94112 95.39436  0.25119 0.55644  0.64775
datasel [16]. ONERA consists of 24 pairs of mullispectral images Chanoe 44 80 chongs e BBy Do #EM1ogech 10U VAT Change and 7o changeces ccrecy ot wih esactthe M Oroput vee
with their ground truth pixel annotation taken {rom the Senlinel-2 “le ol : . . :
satellites between 2015 and 2018. Following the ONERA creator’s -
guidelines, we split the dataset in train and test set. Thus, we end - "
up with 14 images for training and 10 for testing. Images vary in } ’ i” . JRArHn
size and spaltial resolution between 10m, 20m and 60m. P " ’
4.2 Settings ol e wo. o __

In this section, we present the settings used in the experiments.

Specifically, the model parameter T from LEq. 4 is set to 0.002. We
experiment also with the number of the bands used as inpul, i.e., (i)
only the RGB bands (¢ = 3), (ii) all Sentinel-2 bands with resolution
<= 20m (¢ = 10) and, (iii) all Sentinel-2 bands (¢ = 13), in order to
illustrate the performance of methods according to the number
of bands. Furthermore, we perform experiments that check how

the different number of epochs affects the network performance.

We evaluate the model performance for 30, 50, 100 epochs and
present the only when 13 bands are used, because under these
setting we observe that even though the FresUNet outperforms all
networks, our model presents less fluctuations in change class and

better results in no change class in contrast to the other networks.
Moreover, we use patch size = 96 and batch size = 16 similar to [15].

The number of forward passes f is set to 3 according to the work

in [13], while the Adam optimizer with default parameters is used.

According to the experiments of the right graph of Figure 5 the
parameter of MC Dropout is set to 0.45.

The proposed BiasUNet method is implemented in Python 3.8.10
with PyTorch, which is powered by a workstation with Intel Xeon
Silver 4210 CPU (2.20 GHz, 10 cores, and 125GB RAM) with GeForce
RTX2080 Ti TURBO 11GB GDDRé6 NVIDIA GeForce and 18.04.5
LTS Ubuntu software. We compare our approach with four state
of the art methods UNet!, SiamUNet-conc!, SiamUNet-diff' and
FresUNet' .

"https://github.com/redaudt/fully_convolutional_change_detection

MC Oropeut paramater

Figure 5: Change and no change class accuracy of BiasUNet
according to the values of 7 and MC Dropout for 30 epochs
and 13 bands.

The evaluation metrics used for measuring the performance of
each method [15] are the following: class accuracy, dice, kappa,
net-accuracy, net-loss, precision and recall. As regards to the time
needed for the training and testing of the models, all models need
about 2 hours for 30 epochs of training and less than 1 second for
testing.

4.3 Results

In this section, we present the evaluation metrics for change and
no change accuracy for four state-of-the-art models on ONERA
dataset. Additional experiments are included based on number of
training epochs, parameter sensitive and some visual results.
Table 1 shows the evaluation metrics for the proposed BiasUNet
approach, compared to the four state-of-the-art methods. Kappa and
dice measures the consistency and the similarity between predicted
and ground-truth classes, respectively. Higher precision shows that
the model returns relevant results, while higher recall shows that it
returns most of the relevant results (whether or not irrelevant ones
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Figure 6: Change and No-change accuracy of all models for
30, 50, 100 epochs.

are also returned). Higher values for net-accuracy and lower values
for net-loss show that the model learns to detect better changes.
As Table 1 shows, the BiasUNel outperforms almost all baselines
with different band sizes (¢ = 3, 10, 13 bands) in ONERA benchmark
dataset, which demonstrates its effectiveness. We observe that as the
number of bands decreases, the performance of the state-of-the-art
models mainly decreases. Another conclusion that could be drawn
is that the performance of many state-of-the-art methods vary
significantly across bands, while the performance of BiasUNel is
relatively stable across the bands, reflecting its capability of utilizing

smaller bands to better change detection information. Specifically,

it captures the second best score of change class accuracy with
value 68.24% for 13 bands, whereas for 3 and 13 bands captures the
besl score approximalely 64.19% and 64.21%, respeclively.

Figure 6 depicts the change and no change classes accuracy for
13 bands for all the models evaluated in respect to the number
of epochs. One can notice that all models detect better the no
change class for all epochs. Tt should be also noted that although
FresUNet achieves the best score of change accuracy (~ 68%), it
achieves the lowest score of no change accuracy (~ 94%) in 30

epochs. Nevertheless, BiasUNet presents a more stable trade-ofl’

between change (~ 65%) and no change (~ 95%) class accuracy in
contrast to the other models.

Moreover, experiments of BiasUNet according to the change
class and no change class accuracy with threshold parameter T

of majority voting function for 30 epochs are given in Figure 5.

BiasUNet presents a stable behavior in no change class according
to threshold as well as the MC Dropout values. Additionally, it
captures a peak T = 0.002 and for MC Dropout 0.45. We notice that
the change class has a Bayesian distribution of the values related
to MC Dropout values.

Figure 7 offers a qualitative evaluation of the methods compared
as it depicts the change maps results for three query image pairs
from the ONERA dataset for each of the evaluated methods. The
first three columns depict the query at time Ty, T> and ground truth
(GT) respectively. Each of the following columns of the tableau
corresponds to the returned results of one method. Moreover, the
different lines correspond to different number of bands used as
input. Specifically, the first 3 lines show the outcome when 3 bands
are used as input, the next 3 lines the results when 10 bands are
used and, finally the last 3 lines the results in case of 13 bands. As

far as the color labels, white color corresponds to true positive,

black to true negative, green to false positive and magenta to false

M. Pegia, et al.

SiamUNet_conc SiamUNet_diff  FresUNet BiasUNet

3 bands

10 bands

13 bands

True positive

I e negative [N False negative

False positive

Figurc 7: Change detection performance of the proposed
BiasUNct and compared networks on the ONERA benchmark
datasct with different number of bands.

negative. As the figure shows, the BiasUNet returns more stable
and less noisy results for the given multi-temporal image pairs in
contrast to the state-of-the-art networks.

5 CONCLUSION

In this work, we have modified the FresUNet network by using
Bayesian learning. The advantages of Bayesian learning is that it
can adapt data from their statistical properties and include regu-
larization parameters in the estimation process. The experiments
performed show that the proposed BiasUNet network outperforms
almost four state of the art networks with more stable trade-off
between change/no change class accuracy over ONERA dataset.
In the future, we plan to investigate the evaluation of the areas
where the network predicted the wrong class change with high
confidence.
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