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ABSTRACT
This paper focuses on the determination of the evoked sentiments
to people by observing outdoor and indoor spaces, aiming to create
a tool for designers and architects that can be utilized for sophis-
ticated designs. Since sentiment is subjective, the design process
can be facilitated by an ancillary automated tool for sentiment
extraction. Simultaneously, a dataset containing both real and vir-
tual images of vacant architectural spaces is introduced, while the
SUN attributes are also extracted from the images in order to be
included throughout training. The dataset is annotated towards
both valence and arousal, while five established and two custom
architectures, one which has never been used before in classifying
abstract concepts, are evaluated on the collected data.

CCS CONCEPTS
• Information systems→ Sentiment analysis.

KEYWORDS
Image Sentiment Analysis, Deep Learning, Vision Transformers,
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1 INTRODUCTION
Image sentiment analysis aims at the prediction of the sentiment
that is evoked by the content of an image to its viewer. In recent
years, with the rise of social networks and virtual reality applica-
tions, the study of image sentiment analysis has gradually attracted
attention from academic and industrial communities. The existence
of a supplementary automated tool can guide architects and urban
designers, so that their creations meet the needs of the citizens
and improve the aesthetics of places. Automatic understanding of
the sentiment hidden behind images and videos has many applica-
tions, such as online advertisement, brand monitoring and customer
feedback to name a few. Our work focuses on the sentiments that
images of outdoor or indoor spaces evoke to their viewers from
the architectural side of view. Moreover, a sentiment estimation
from outdoor or indoor spaces is of great interest towards creating
digital models based on architectural sketches. The goal is to pre-
dict the feeling a person would have if he/she was at the depicted

in the image place, and use this automatic technique as a tool for
architects and interior designers.

Most of the works on sentiment analysis are based on textual
analysis of comments or opinions about specific topics. Recently,
many works focus also on image sentiment analysis. However, only
a few, like the work proposed in [9], concern the prediction of
sentiment related to places. Respectively, there are no available
annotated datasets that could be exploited for the training of senti-
ment prediction models in this domain, apart from OutdoorSent [9].
Hence, we created a novel dataset with a variety of outdoor and
indoor images, along with screenshots of VR environments, ori-
ented to urban architecture and interior design that was annotated
by a targeted group of people (architect students, office workers,
citizens). The novelty of our dataset is threefold: i) it contains im-
ages of outdoor and indoor places that are annotated in terms of
sentiment from the architectural point of view, ii) it is a mixed
dataset that contains both real photos and screenshots of VR spaces,
the first to exist related to sentiment analysis and iii) the annota-
tions concern both the valence and arousal sentiment dimensions,
while we found no other dataset of similar content with arousal
annotations, enabling an holistic design evaluation. Moreover, we
tested this new dataset using both well-established CNN-based net-
work architectures and a recently proposed exclusively for image
sentiment analysis [36] to evaluate state-of-the-art techniques un-
der the scope of a specific problem. The developed dataset can be
exploited by the research community acting as a benchmark for the
under study problem; hence, it is publicly available 1 following the
required copyrights. Finally, due to their improved performance in
many tasks, a modified architecture of swin transformers [21] is
proposed and validated, a technique that has not been previously
used in the context of image sentiment analysis.

2 RELATEDWORK
There are numerous of works for sentiment analysis based on the
analysis of text, but recently the study of image sentiment analysis
has been intensified too, due to the evolution of deep learning and
multimedia distribution though social networks. In this section, we
review important works on image sentiment analysis for a variety

1https://m4d.iti.gr/urban-indoor-outdoor-sentiment-analysis-dataset-mindspaces/

https://m4d.iti.gr/urban-indoor-outdoor-sentiment-analysis-dataset-mindspaces/
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of applications based on the sentiment model, the feature extraction
and classification approaches that they follow.

2.1 Sentiment Model Approaches
Different approaches of the sentiment expression were presented
throughout the related literature[1]. In general, there are two main
approaches for emotion modelling, the Dimensional Model and the
Categorical Model. The Dimensional approach represents emotions
as points in a two or three dimensional space. Emotions have three
basic underlying dimensions, namely the valence, the arousal and
the control (or dominance). However, as the control dimension has a
small effect, most of the related works focus on a 2D emotion space.
This space is obtained by considering only the arousal and the va-
lence axis, as shown in Fig. 1. Most image sentiment analysis works
take into account only the valence dimension, either by predicting
the sentiment polarity in terms of two levels (positive, negative)
or levels (positive, neutral, negative). There are also approaches
that adopt more than three levels for the valence dimension, like
the work of [32], where five polarity levels are used. The Categor-
ical Model refers to specific emotions, such as "anger", "fear" etc
and these emotions can be mapped to the Valence-Arousal-Control
space. There are many studies regarding the emotion categories
that should be considered, like the Plutchnik’s Wheel of Emotions
[26] and Ekman’s theory [11].

In our work, we use the Dimensional Model, taking into consider-
ation both the Valence and Arousal dimensions, using a three-level
sentiment polarity.

2.2 Image Sentiment Analysis Datasets
International Affective Picture System (IAPS) [19] comprises a dataset
of annotated images in terms of emotions that they evoke to their
viewers, using the Valence-Arousal-Control (VAC) sentiment model
approach. IAPS, which is one of the most widely used material for
psychological research, is composed by 716 photos covering various
scenes. The authors of [22] released the Affective Image Classifi-
cation Dataset, which contains 1035 abstract artworks and artistic
photos that were crowdsourced to be classified between eight es-
sential emotions. The Geneva Affective Picture Database (GAPED)
[8] includes 730 pictures labelled considering negative, positive
and neutral, while all images have been rated considering the va-
lence, arousal, and the scene coherence. In [3], the Visual Sentiment
Ontology (VSO), a significantly larger dataset of about 0.5 million
images of various topics from social media, is presented. Its images
were crawled from social media and labeled with thousands of ANP
(Adjective Noun Pair) concepts. In addition, the authors created
a separate image dataset from Twitter for a sentiment prediction
benchmark. Another dataset created for image sentiment analysis
purposes is the Emotion6 dataset [25], in which the images are la-
beled based on the Ekman’s six basic emotion categories [11]. The
DeepSent dataset that consists of 1,269 Twitter images annotated in
terms of positive or negative sentiment was presented in [36]. These
images were manually labeled by five people using the Amazon
Mechanical Turk2 (AMT) crowd-sourcing platform. The authors of
[31] crawled approximately 3M tweets from July to December 2016.
The collected tweets have been filtered considering only the ones
2https://www.mturk.com/

including an image while accompanied by English text. The tweets’
extracted sentiment has been classified using a polarity classifier
based on a paired LSTM-SVM architecture. The most confident
predictions have been used to determine the sentiment labels of
the images in terms of positive, negative and neutral. The resulting
Twitter for Sentiment Analysis dataset (T4SA) consists of 1M tweets
and related 1.5M images. Flickr and Instagram (FI) dataset [37] is
collected from social websites using emotion categories as query
keywords. Workers from Amazon Mechanical Turk were then hired
to further label the images, shaping a total of 23,308 well-labeled
images with eight sentiment categories. By briefly presenting the
most widely used images sentiment analysis datasets throughout
the research community, the need for a dataset containing also
arousal annotations on real and synthetic images for design pur-
poses is exposed due to its absence. Hence, the expansion of the
existing dataset with synthetic images will augment data availabil-
ity towards improving the developed models for more accurate
sentiment analysis.

2.3 Image Sentiment Analysis Approaches
Different image sentiment analysis approaches have been proposed
in the literature involving low-level features (e.g., color, texture),
semantic features, machine learning and deep learning techniques.

In [3], the concept of adjective-noun pairs (ANPs) was presented
aiming to describe images in terms of emotions/sentiments, estab-
lishing a novel mid-level representation for bridging the affective
gap. An alternative to low-level attributes to classify visual sen-
timents, named Sentribute, was presented in [38]. The authors
achieved to establish an association between those attributes and
the emotional sentiments evoked by the images. Another methodol-
ogy was presented by the authors of [41] used the ANPs to extract
image features with a support vector machine (SVM) classifier for
sentiment classification achieving precision of 86% on the visual sen-
timent ontology (VSO) dataset. ANPs were also used for automatic
emotion and sentiment extraction from images in [13], providing
enhanced performance compared to low-level image descriptors.
Additionally, authors of [35] combined CNNs with separate adjec-
tive and noun networks, accomplishing better results than previous
works that used ANPs. The researchers of [23] extracted objective
text descriptions from the images, and they trained a support vec-
tor machine (SVM) classifier to determine the sentiment polarity.
They used a dataset with 47235 images and were able to achieve
an accuracy of 73.96% combining text and visual features. In [33]
a deep-learning-based long short-term memory model (LSTM) is
proposed for image sentiment analysis on Flickr and Twitter image
datasets achieving an accuracy of 84% and 75% on each one respec-
tively. DeepSentiBank [6] introduces a visual sentiment concept
classification method based on deep convolutional neural networks
(CNNs) for the prediction of visual sentiment concepts in the form
of adjective noun pairs (ANPs) that were automatically discovered
from web photos tags. Also, in [36] a CNN architecture specifically
designed for visual sentiment analysis is presented, while the au-
thors built the aforementioned DeepSent dataset. The authors of
[5] presented extensive experiments comparing several fine-tuned
CNNs for visual sentiment prediction. Moreover, they provided vi-
sualizations of local patterns that the network learned to associate

https://www.mturk.com/
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with image sentiment giving an insight on how visual positivity
(or negativity) is perceived by the model. Furthermore, in [9] a
novel urban outdoor image dataset named OutdoorSent was intro-
duced, while five different ConvNet architectures were compared,
including a custom sentiment analysis specific architecture from
[36], using varying datasets of images, as well as with and without
combining the activation maps of the convolution layers with SUN
[24] and YOLO [27] semantic attributes. Lastly, the researchers of
[40] proposed a novel CNN model that learns and integrates the
content information from the high layers of the deep network with
the style information from the lower layers to form a more dis-
criminative representation for emotion recognition. In addition, a
new loss function is designed through the latter work by including
the emotion labeling quality to optimize the proposed inference
model. In conclusion, the collected images for the presented work
can contribute in the validation of several algorithms towards both
valence and arousal in order to create automated tools for sentiment
analysis.

3 DATASET DESCRIPTION
In order to train and evaluate the produced CNNs, a total of 1064 im-
ages were selected by sampling images from various sources, such
as the Places dataset [42], VR environments, and via image crawling.
The motive behind selecting images from the Places dataset was its
scene-centric character containing various scenes of outdoor spaces
that would enrich the final dataset. In fields such as sentiment anal-
ysis and opinion retrieval applications the emotional response can
be measured utilizing the Self-Assessment-Mannequin (SAM) [4]
aiming to deploy a two-fold dataset for classification purposes. In
this research, we adopted the three level sentiment polarity for
valence and arousal respectively as seen in Fig. 1, since dominance
has little effect on shaping sentiments. Additionally, some samples
from the final dataset can be seen on Fig. 2 and Fig. 3. Ultimately,
images were divided into batches of 30 images and later integrated
to GoogleForms questionnaires, enabling us to control the non-
duplication of answers on each form. Consequently, the process
became less exhausting and error-prone, while the interface con-
tained details regarding the objectives in Spanish, Catalan, English
and French. Participants with selected backgrounds studying or
working on architecture and design were asked to provide their
emotional response via the created questionnaires. Finally, every
image was annotated at least by 5 individuals, similarly to [36],
while a total number of 50 people participated to the annotation
task.

Nevertheless, sentimental subjectivity has significant impact
on every datasets’ ground truth and as it is stated in [1], visual
features, annotation time and the sentiment holder are essential and
affect sentiment polarity over time, therefore sentimental ground
truth should be considered as something that will evolve along
with major societal challenges. In the case of sentiment analysis of
architectural space, globally we are on the verge of re-evaluating
current practices regarding design rules, while environmental and
societal requirements begin to change drastically. Also, as design
and architecture are examined, the selected images tend to exclude
human presence or traffic, while the vast majority of the selected
images were captured by the height of human vision, as indicated

Figure 1: Two dimensional valence-arousal representation

Table 1: Initial valence - arousal distribution of images be-
tween classes.

Dataset Positive Neutral Negative
Valence 508 325 231
Arousal 226 505 333

that it would be beneficial for architects. Hence, this work aims to
provide a baseline towards understanding the effect of urban visual
information on human sentimental stimuli.

As two datasets are formed based on the label consensus, which
takes into consideration the amount of people that assigned the
same sentimental stimulus to a specific image. Based on the major-
ity voting, the created datasets are slightly unbalanced regarding
the distribution of images per class as seen in Table 1. Concerning
the datasets’ content, 9.3% is derived from Unity virtual environ-
ments 3 of indoor spaces with multiple lighting, texture, furniture
arrangement and object configurations. The number of synthetic
images across the different classes is equal to approximately 8-10%,
creating an equal distribution throughout the datasets’ classes. Also,
part of the synthetic images depict public spaces and urban cultural
landmarks. Thus a variety of virtual spaces enhance its uniqueness
and sparsity towards understanding the way human sentiment is
triggered based on indoor and outdoor design. Additionally, to the
best of our knowledge, the uniqueness of the presented dataset re-
lies also on mixing synthetic and real images for sentiment analysis
for the first time. Another potential advantage from introducing
synthetic images in the presented dataset is the suitability of the
produced models, to be used in a 3D design environment, guiding
designers throughout the design process objectives.

4 EXPERIMENTS AND RESULTS
4.1 Learning Details
In this subsection, the selected architectures are presented, as we
took advantage of some widely used Convolutional Neural Net-
works (CNNs) for visual analysis and opinion mining tasks, namely
the VGG16 [29], InceptionV3 [30], ResNet50 [16], DenseNet169 [17],
Xception [7]. At the same time, we examined the published Robust
3https://unity.com
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Figure 2: Valence dataset sample images. On the left Negative,
centre Neutral, right Positive deriving from the Unity design
environment

Figure 3: Arousal dataset sample images. On the left Calm,
centre Neutral, right Excited deriving from the Unity design
environment

architecture [36] because of its reduced complexity compared to
the aforementioned CNNs. Additionally, another lower complexity
architecture never used for sentiment analysis was utilized based on
advanced Vision Transformers (ViT) [21] capable of constructing hi-
erarchical feature maps, as it will be described later. An experiment
including vision transformers towards tackling a sentiment analysis
task, is of great interest towards evaluating its classification ability
on abstract concepts, which as far as we are concerned has never
been conducted before. The aforementioned argument is reinforced
as results from [21] suggest that the proposed Swin Transformers
can serve as a general-purpose backbone for computer vision tasks.
To speed up the training phase, architectures [7, 16, 17, 29, 30] were
fine-tuned with the pre-trained ImageNet [10] weights. The afore-
mentioned 7 architectures are included in order to test them on a
common benchmark dataset aiming to determine which one gives
better results and why it is better than the others.

In addition, a simplified Swin Transformer architecture was vali-
dated, receiving reshaped input images (224, 224, 3), patch size is
set to (2, 2) with embedded patch contents and positions, an initial
learning rate of 0.0001, and a weight decay of 0.01 are used, while
training took place for 25 epochs. Concerning the self-attention
parameters, those are fixed between blocks, but can also vary for
larger architectures. The number of attention heads was set to 8, the
embedded dimensions were set to 64 and the number of nodes to
256 in order to restrain the increase in computational cost. Finally,
the shift-window parameter are, window size equal to 2, the size
of shifting equal to 1 for stability and elevated precision, while the
number of patches is equal to 112, in an overall attempt to conduct
experiments with a low-complexity swin transformer architecture,
comparable to [36].

The ConvNet Places365 [42] pre-trained on the Places2 dataset
was utilized for the SUN attributes extraction. This 102-dimensional
feature descriptor extract information related with materials, sur-
face characteristics, lighting and spatial organization of a scene.
Convolution maps and SUN attributes are coupled in a series of
dense layers once the SUN attributes have been extracted in order

to forecast the ultimate sentimental stimulus. More specifically, the
coupled information is incorporated into the first fully connected
layer, after each utilized CNN/ViT backbone.

All image dimensions were reshaped to (224, 224) before being
fed to the models besides the Inception architecture, which has
(299, 299) input shape, as recommended for use on Table 2 at [30].
For every one of the aforementioned architectures the top Dense
interpretation layers were updated to cover the problem’s needs.
Hence, convolutional layers will work as feature extractors and
the newly introduced interpretation layers will be capable of inter-
preting the discovered patterns in order to classify each image, see
Fig. 4. The added interpretation layers after each one of the CNN
and ViT backbones described, are two couples of fully connected
and dropout layers with 2048 neurons and 0.2 drop rate for the
first couple, and 1024 neurons and a drop rate equal to 0.2 on the
second one. Afterwards, a fully connected layer with 24 neurons,
as introduced on the [36] publication, is included, as seen on 4.
The aforementioned dense layers were integrated with ReLU ac-
tivation function, while the final layer is consisted of 3 neurons
with a softmax activation function in order to provide the predicted
sentimental responses.

Figure 4: Newly inserted interpretation and regularization
layers on top of every used CNN.

The architecture based on the Swin Transformer [21] produces
hierarchical feature maps by merging image patches, whilst its
backbone is shown in Fig. 5. This leads to linear computation com-
plexity to the input image size due to computing for each local
window’s self-attention, in contrast with existing Vision Trans-
formers, whose complexity is quadratic to image size due to com-
puting the self-attention globally for each resolution. As stated
in [21], the Multi-head Self Attention (MSA) module in a Trans-
former is replaced by the Swin Transformer consisting of a shifted
window based approach. Swin Transformer computes token sub-
sets through non-overlapping windows that are alternately moved
within Transformer blocks, as opposed to other vision transformer
variations that compute embedded patches (tokens) globally, mak-
ing it suitable to process high-resolution images [21]. Results from
[21] on ImageNet-1K for image classification [10], COCO object
detection [20], and ADE20K semantic segmentation [43] verify that
Swin Transformers can be utilized as a general backbone for image
analysis tasks.

Considering the slightly imbalanced datasets, image augmenta-
tion techniques such as rotation, width/height shift and zooming
were applied. We employed 5-fold cross-validation utilizing 60% of
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the images for training, 20% for validation and 20% for testing. Fur-
thermore, we applied a weighted optimization during the training
phase to tackle the problem of class imbalance, where the signifi-
cance of each sample is expressed by assigning the minority class
with increased weight and vice versa. More specifically, the classes’
weights are assigned based on calculating the quotient of the min-
imum number of samples appearing in a class by the number of
samples in each subclass.

Concerning the hyper-parameter tuning needed for the training
process, batch size was set to 32. Adam optimizer was chosen [18],
a method suited for large parameter problems, which is a computa-
tionally efficient method with minor memory requirements, and an
initial learning rate of 0.0001. A learning rate scheduler was also
implemented for reducing the loss at the last stages of training,
gradually decreasing the learning rate as the training process is
almost complete, down to 0.000001.

Figure 5: Swin Transformer architecture used as a backbone
for sentiment analysis [21]

4.2 Results
Having discussed the deployed architectures throughout this re-
search effort, the utilized dataset and the approach followed for
sentiment analysis we proceed towards analyzing the experimental
results. A total of 28 experiments were conducted including the
SUN attributes insertion, by training separately the valence and
arousal models, because a hierarchical model would pose disadvan-
tages, such as the complexity of the overall combined model and
therefore expensiveness of computational resources. Work from
[9] focuses on sentiment understanding of urban outdoor images,
while claiming that indoor images do not influence the sentiment
classification of outdoor images taking into consideration the com-
putational cost trade off. This work aims towards evaluating indoor
and outdoor space in real and virtual 3D environments, therefore
a relevance gap occurs, but some results from [9] can serve as a
baseline for comparison.

Another experiment performed was the use of the SUN semantic
attribute database [24] in order to extract the scene attributes as low-
dimensional features. The extracted features are used to capture
high-level context and semantics in scenes. A direct comparison
with [9] results can be conducted, however, YOLO attributes were
not included as the majority of images contained vacant spaces in
an attempt to avoid inserting noisy tensors, due to irrelevant classes
in the PASCAL VOC2012 object detection dataset [12]. Following
this methodology enables us to evaluate the added value of scene
attributes.

In Table 2, results for three valence classes are presented, while
performance fluctuates from 43.55% up to 70.31%. Performance

levels are enhanced by 9.73% for [21], 5.11% for [36] and 6.1% for
[16], while they are reduced by 0.94% for [17], 1.7% for [7], 0.24%
for [30] and 4.15% for [29] when the SUN attributes are introduced
throughout training. The aforementioned performance reduction
leads to the conclusion that high complexity architectures do not
to benefit from the introduction of the SUN attributes. The SUN
attributes tend to impact positively simple architectures, as [9]
states, and our experiments confirm this claim as the Robust and
Swin based architectures are both benefited. This claim is coherent
and lucid for smaller deep CNNs compared to [7, 16, 17, 29, 30]
as the increased number of convolutional layers with different
filter and stride size extract diverse sets of features that are later
fed towards the interpretation layers. Hence, a tensor decorated
with the SUN attributes can offset the reduced number of extracted
features between shallower CNNs. At the same time, the same does
not seem to apply for all of the rest architectures on Table 2.

Having discussed results from Table 2, we move forward to the
experimental evidence of Table IV from [9], where five architec-
tures [16, 17, 29, 30, 36] were trained on the OutdoorSent dataset
on the same three valence classes. Compared to results from Table
IV from [9], the rest of the architectures report an increased accu-
racy performance by 5.68% for the [36], 26.07% for [29], 5.22% for
[30], 2.71% for [16] and 6.27% for [17] without the SUN attributes.
Respectively, when introducing the SUN attributes we observed an
enhanced accuracy by 0.66% for [36], 5.34% for [30], 8.7% for [16]
and 6.88% for [17] and a decrease by 3.34% for [29]. Experiments
outperformed the corresponding ones from [9] and that can be
an indicator that this dataset is suitable and robustly annotated
towards the task of sentiment analysis of 3D spaces, while we also
performed experiments with [7].

Proceeding, Table 3 aggregates the results for all experiments
on the arousal dataset. On that account, [7, 17, 29, 30] networks
indicate a slight performance reduction, while [16] records a slight
enhancement of 0.47% when trained with the SUN attributes. Once
again, [36] and [21] are benefited from introducing the SUN at-
tributes during training and a performance enhancement by 9.4%
and 5.68% is observed respectively. Indicatively, in Fig. 6 the pre-
dictive ability of Densenet is visualized via the confusion matrix
trained for 10 epochs on the valence dataset when inserting the
SUN attributes. Regarding the predictive ability of Densenet, Fig.
6 indicates that the majority of the testing samples per class are
accurately classified. The rest of the architectures exhibit a similar
but declining behaviour while classifying the test images towards
their potential sentimental response. Hence, the validated archi-
tectures, especially the presented Densenet, are able to generate
reliable predictions in order to be a complementary tool for archi-
tects and designers throughout the design process. Unfortunately,
to our knowledge there are no datasets and algorithms deployed
for classifying the arousal of architectural 3D spaces, therefore
an evaluation or comparison of results is infeasible. Nevertheless,
research described in study [34] gives some insights on the relation-
ship between arousal and crucial spatiotemporal aspects of form
for affect-driven architectural design. Findings demonstrate that
characteristics such as curved or complicated spaces are strongly
associated with higher arousal, a dominant characteristic on many
samples of the ’Excited’ label, in contrast with the ’Calm’ one.
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Table 2: CNNs performance on the valence dataset in terms
of accuracy(%)

Architecture Without Attributes With Attributes
Densenet [17] 68.37 70.31

InceptionV3 [30] 65.93 65.69
ResNet50 [16] 63.01 69.1
VGG-16 [29] 58.4 54.25
Robust [36] 43.55 48.66
Xception [7] 65.2 63.5

Swin based [21] 44.28 54.01

Table 3: CNNs performance on the arousal dataset in terms
of accuracy(%)

Architecture Without Attributes With Attributes
Densenet [17] 69.87 70.61

InceptionV3 [30] 69.62 64.19
ResNet50 [16] 66.42 66.9
VGG-16 [29] 53.58 50.37
Robust [36] 40.72 50.12
Xception [7] 68.72 62.22

Swin based [21] 46.17 51.85

As stated, there is evidence of published research effort regarding
evaluating the arousal stimulus in various computer vision tasks.
Nevertheless, there is no related research effort towards evaluating
architectural spaces, as the majority of the publications utilize so-
cial media data, such as twitter, in order to examine user’s valence
and arousal. Arousal, again, is not included in most publications re-
garding sentiment analysis whilst more works evaluate EEG signals
[14, 39], images [36], whilst more common is multimedia opinion
mining systems analyzing images and social media posts [32], [2].
It is clear that the relevance gap between different tasks requires
the need to extract totally different features in order to train robust
algorithms.

4.3 Computational Cost
We implement the presented DCNN models combining Keras, Ten-
sorflow frameworks [15] and Python 3 on a Windows X86-64
machine with Intel(R) Core(TM) i5-7600K @3.8GHz, 8 GB RAM
and NVIDIA GeForce RTX 2070. The described system was used
throughout all training processes. Specifically, Xception [7] was
trained for 8 epochs, Densenet [17] and InceptionV3 [30] were
trained for 10 epochs, VGG-16 [29] for 20 epochs, Robust [36] and
the Swin based [21] for 25 epochs and ResNet50 [16] for 27 epochs.
On inference mode there is not much variation between the pro-
duced architectures as approximately 1.5 seconds per image are
required in order to produce valence and arousal predictions.

5 COMPARISON AND CONCLUSIONS
In this research, we validated several CNNs on a novel dataset
consisting of real and virtual images of vacant 3D indoor/outdoor
spaces. The goal was to investigate its potential for the task of visual

Figure 6: Densenet confusion matrix trained on the valence
dataset for 10 epochs including the SUN attributes.

sentiment extraction, and the impact of inhomogeneous images
during training state-of-the-art algorithms. Results suggest that
performance of high complexity architectures can reach adequate
levels. Regarding lower complexity architectures, as described in
previous sections, certain limitations occur compared to the rest
of the established architectures [7, 16, 17, 29, 30]. Another finding
concerning the proposed Swin based architecture [21], is that it
outperforms the Robust [36] for both valence and arousal, but it
cannot be safely recommended for sentiment analysis tasks as
more research is required, confirming that they are inferior trained
from scratch on a mid-sized dataset such as ImageNet, compared
to well-established CNNs. Pursuant to the results section, while
compared to [9], the introduced SUN attributes seem to have a
positive effect by enhancing the performance of lower complexity
CNN architectures to a greater extent than the widely established
CNNs.

Concluding, this research can prove beneficial to a broad area
of study such as psychology, virtual reality in architecture, social
science, and even towards designing sophisticated multimodal sen-
timent analysis systems for real life and virtual environments. We
are ambitious towards enhancing the percentage of VR related im-
ages on future work, including both indoor/outdoor content from
virtual environments and secondary real images. That would facili-
tate testing the produced algorithms on design environments, while
evaluating the produced architectures on external task compatible
datasets would be exemplary. Apart from its exploitation in senti-
ment analysis, the introduced dataset could complement Synthia
dataset [28], which originally used for semantic segmentation of ur-
ban scenes, providing also sentiment analysis metadata facilitating
the deployment of multimodal systems on virtual environments.
Hence, future research efforts can contribute towards reinforcing
our understanding and mapping of future urban environments.
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