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Abstract. Disaster risks related to natural hazards are evolving gradu-
ally, albeit accelerating over time, the human-made and cyber threats are
changing rapidly exploiting the increasing progress in technologies and
the complex, highly interlinked, modern environment of critical infras-
tructures. Therefore, as these threats have been intensifying, the actions
to strengthen the resilience of critical infrastructures should be step up,
by understanding their complex systems as well as the multi-risks nature.
In this landscape, the aim of this work focuses on proposing a framework
that enables the identification of potential human-made threats, created
by the usage of natural means and captured by heterogeneous sources
(CCTV, UAV, etc.). Advanced machine learning techniques provide anal-
ysis of events and useful information, which are fused semantically and
estimate the severity level of the potential attack, serving the needs for
real-time monitoring and mitigating the risk.
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1 Introduction

Nowadays, the crisis panorama has changed and diversify increasingly from “tra-
ditional” crises generated by natural hazards to technology-driven crises gener-
ated by cyber-attacks, or a combination of them ([8], [9]). The unexpectedly large
scale of the extreme natural events in terms of their severity and frequency, the
trans-boundary and cross-sectoral nature of new or unprecedented crises, com-
pose a challenging and changing landscape in disaster and risk management [2].
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In Global Assessment Report on Disaster Risk Reduction 2019, has been under-
lined the need to move beyond the conventional definition for the disaster risk,
re-examine and re-assess the risk, by taking into consideration the pluralistic
nature of it: in multiple dimensions, at multiple scales and with multiple im-
pacts [7]. Furthermore, the rise of new technologies, from one side intensifies the
potential threats and attacks and from the other, provides empowered solutions
to address them and strengthen the resilience in human societies and Critical
Infrastructures (CI).

Recent technological innovations like IoT, 5G, unmanned aircraft vehicles,
and artificial intelligence have brought immense benefits and contributed further
efficiencies to CI operations. However, they have posed serious threats facilitating
the malicious actors interested in disrupting CI operations. Particularly, in the
CIs which are becoming increasingly complex, automated, and interconnected,
thereby new vulnerabilities have been introduced exposing them to malicious
physical and cyber-related activities ([8], [9], [13]). Hence, lately the NIS Direc-
tive, has been revised in order to extend its scope and include more sectors and
services as either essential or important entities (NIS21).

Object detection is considered one of the fundamental fields of computer
vision. The detectors can be roughly divided into 2 categories: the two phase
ones and the single-phase ones. The former include an extra sub-network which
is responsible for proposing bounding boxes. The more prestigious work in the
former category is Faster R-CNN [19] while for the latter category are Single Shot
Detector (SSD) [17] and You Only Look Once detector (YOLO) [18] (which has
actually spawn a family of detectors). The two-phase detectors are considered
more robust and effective but also less efficient while the single-phase ones are
lighter, more efficient and less effective. Over the years new architectures have
emerged which attempt to combine the best of the practices proposed. Such a
work is EfficientDet [25] which is based on an efficient backbone, EfficientNet
[24] and a bi-directional intra-level feature fusion.

For activity recognition also the focus is on deep learning techniques, since
they provide the state-of-the-art performances. One of the first attempts was
the Two-stream algorithm [22] which combines two different streams (visual and
depth streams in order to increase performance and collect features from both
spectra. Also, another monumental work is 3D ResNet [11] which tries to adopt
the success of ResNet networks [12] to temporal spectrum by expanding 2D
ResNets to the temporal dimension also.

Face recognition depends heavily on deep learning methodologies to achieve
significant boost in performance. In this class of algorithms, deep feature extrac-
tors are used to generate face representations, tuned for pose and illumination
invariance, from the plethora of the available training data rather than from
low-level hand-crafted features. Siamese networks for deep metric learning were
proposed in the work of [4], which was one of the initial attempts to leverage
deep learning. A Siamese network works by extracting features separately from

1 https://digital-strategy.ec.europa.eu/en/library/

revised-directive-security-network-and-information-systems-nis2
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two modes (inputs), with two identical Convolutional Neural Networks (CNNs),
taking the distance between the outputs of the two CNNs as dissimilarity. In a
similar fashion with face detection works, facial parts were processed separately
in cascade networks, as in the work of [23]. Soon after, the focus shifted heavily
towards improving the deep metric learning methodology, which led to significant
performance improvements [6]. Experimentation with novel face similarity mea-
sures dominates the undertaken effort in these works. Moreover, discriminant
face representations are characterized by smaller maximal intra-class distance
and minimal inter-class distance in the embedding space, thus, novel CNN loss
functions are meticulously explored as well, in order to find the most appropriate
for the task.

Although the application of Machine Learning methodologies to tackle spe-
cific problem areas in disaster risk management dates back to a recent couple of
decades, however, significant challenges still need to be addressed [13]. Machine
Learning methods have penetrated in a descriptive and/or predictive manner
in all the phases of disaster/crisis management, contributing in various ways
to the assessment of the hazard, exposure and vulnerability from natural and
human-made disasters [27]. Hence, one of the main challenges concerns the lack
of required training data which limits the utilisation of the machine learning
algorithms to be trained in order for the latter to be able to predict or assess
the risk of a crisis event. Motivating by this gap, the proposed annotation tool
aims to involve the experts in the Satellite ground segments domain, by mapping
their experience and knowledge into the characterisation of hypothetical extreme
physical (natural or human-made) events in terms of their severity and impact.

The continuous growth of semantic web technologies provides several ontology-
based approaches in several domains. For this task, the categorisation of the do-
mains includes the events and observations, the crisis management and the cyber-
physical threats and vulnerabilities. In particular some representative ontologies
for each domain respectively, that influenced the process and the methodolog-
ical approach for our framework include SSN [5] and SOSA [15] for mapping
of sensors and their observations, properties and features of interest; MMF [10]
an ontology developed in the context of managing sensor assignment to mis-
sion; finally MOAC [16] and SoKNOS [1] with wide field of application in crisis
management and response. Our ontological representation is tailored to the pro-
tection of ground segments of space systems.

In this work, we focus on the detection and monitoring of physical threats
generated by human-made malicious activities on ground segments of space sys-
tems. The potential attacks are classified and assessed in terms of their severity
level and potential consequences in the ground segments, supporting in this way
the decision-making processes to mitigate the risks. Machine learning advances
are the core aspect of our approach as innovative deep-learning methodologies
analyse multimedia content from videos, aiming to detect malicious objects and
suspicious activities of identified and potentially unauthorised persons in re-
stricted areas. Finally, the semantic fusion of information leads to the real-time
monitoring and assessment of the potential attack’s severity level are carried out
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by utilising machine learning methods. Due to the lack of adequate annotated
datasets in automatic risk assessment supervised methods, we propose an an-
notation tool that aims to engage the community of users and experts in the
domain of the protection of ground segments of space systems.

2 Methodological Framework for physical attack
detection and response

In this work, our intention is to highlight some aspects of the above framework,
especially those that detect physical attacks, fuse semantically the identified ma-
licious events, and assess the severity level of those attacks. The proposed frame-
work combines tools (Detection Layer) for detection and recognition of objects,
faces, and activities from video-based content, that obtained from surveillance
systems (CCTVs cameras) or cameras on the UAVs. After the detection, the gen-
erated alerts of the events are combined, homogenised and semantically indexed
in the Knowledge Base (Fusion Layer). The enriched information is propagated
to the Crisis Classification module which is responsible to estimate the severity
level of the event and propagate the results to the CI operators (Decision Layer)
to support decision-making and mitigation actions for timely response to the
physical threat. In Fig. 1 the workflow of information as well as the interactions
between modules in various levels are illustrated. In the following subsections a
more detailed description of the functionalities of each module is exhibited.

Fig. 1. The proposed decision support framework
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2.1 Video-based Object Detection and Activity Recognition

The surveillance of ground segments of space systems is a vital issue for their
secure and seamless operation since new threats seem to arise and some of them
especially focusing on those infrastructures. A huge asset to the latter is the
visual understanding of the surrounding area. The Video-based Object Detection
(VOD) and Activity Recognition (AR) modules are efforts to aid towards this
aim.

Fig. 2. High-level view of combined VOD-AR architecture

First, the VOD module utilise deep learning techniques in order to visually
locate and identify the objects of interest inside the ground segment of space
systems. The input of the module are video streams which are being processed
by large in width but mainly in depth networks. The analysis provide the sys-
tem with an initial interpretation of the monitored area regarding the objects
appearing in it. Although, the initial analysis is performed on a frame level, an
interconnection with consecutive frames is also provided, augmenting the capa-
bilities of the system to clearly isolate true threats from false positive ones. The
actual outcome of the VOD module is a group of bounding boxes around each
detected object of interest accompanied by a confidence score, which reveals
how certain is the network for this detection, and label to denote the class the
object belongs to. Since each detection is performed on a specific frame a spatio-
temporal association of the detected objects across consecutive frames can be
deducted, and, this correlation can be further feed to the relevant AR module.
AR module is responsible for identifying an activity given a specific frame span
(or equivalently a time span and a video from where the temporal boundaries
can be deducted). Thus, VOD can function as a trigger for AR module if certain
conditions are met. Such conditions could be a combination of objects being
detected, such as a person and an object like a bag, a vehicle to specific location
etc. Of course, in a more generic mode, all detected objects involving in potential
activities could be forwarded to the AR to decide the existence of any potential
harmful and suspicious activity. Summarising, the output of the Video-based
Object detection is:
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– Awareness of surroundings via detected objects and individuals

– Bounding boxes and class label for each instance of interest

while for Activity Recognition, the output is:

– Awareness of surroundings via recognized activities

– Label for each activity along with the participating objects

The innovative part of the VOD module is the combined object detection and
activity recognition output. Since, object detector by default do not involve any
temporal information and the activity recognition do not consider any spatial
one, their combination can produce a more thorough analysis of the surroundings
which could include additional information. The idea of combining the two sub-
modules is decipted in Figure 2 where each submodule produces its own outputs
but their is also interconnection between them as VOD feeds AR submodule.

2.2 Face Detection and Recognition

In ground segments of space systems, it is common to restrict access on certain
areas to unauthorised personnel. Typically, access is granted manually by secu-
rity guards, or with electronic access control systems via identity cards. However,
these control mechanisms may be vulnerable to identity fraud attacks. For exam-
ple, someone could get access to a building or an area by using a lost or stolen
card. Therefore, the traditional solutions, when used alone, cannot guarantee
maximum security. Our solution is designed to assist in access control systems
using automatic facial recognition.

The Face Detection and Recognition (FDR) module ensures that restricted
access to facilities is under secure control. At the same time, this module may
also assist in intrusion detection systems, by notifying about unauthorised access
to areas of interest. Within this objective, Satellite Ground Segments and general
Critical Infrastructure are protected from hazardous activities of unauthorised
trespassers while the corresponding personnel and their daily activities are also
secured.

Fig. 3. High-level FDR architecture
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The overall approach of FDR is naturally split into its two cooperating tasks
and is shown in Fig. 3. The module is initialized with a video stream and it
is designed to process single video frames in a serial processing pipeline (one
after another). Processing begins on the Face Detection (FD) component. FD
is responsible to detect patches inside the input frame where faces are tightly
enclosed. The acquired face patches are instantly characterized as unknown and
are immediately provided to the Face Recognition (FR) component for further
processing. FR takes additional input from a pre-existing gallery of known faces
and tries to match the detected faces with the ones from the gallery. The gallery
images belong to authorized personnel with unrestricted access in the area cov-
ered by the CCTV camera. After the recognition process, detailed reports can
be produced with the detection and recognition metadata, e.g., alarm notifica-
tions of potential unauthorised access, list of recognised identities with attached
timestamps for monitoring access to critical assets, enhanced video data with
bounding boxes showing the detected faces for visualisation in command and
control dashboards, etc.

2.3 Semantic Indexing and Linking

The Knowledge Base (KB), is a knowledge representation model for semantically
representing concepts relevant to the cyber-physical threats. The goal of the
KB framework is to research and develop technologies for semantic content and
sensor input modelling, integration, reasoning and question answering.

Fig. 4. High Level overview of 7SHIELD ontology
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The models that are created will constitute for the reasoning mechanisms
taking into account the ontology vocabulary and infrastructure for capturing
and storing information related to the 7SHIELD2 application domain, such as:
(a) Observation and Events (e.g. data collection from face recognition/detection,
multimodal automated surveillance, drone detection), (b) C/P security (e.g. cy-
ber detection, correlation services output), (c) Mitigation and response plans
(e.g. First responder teams, UAV neutralisation). The 7SHIELD Knowledge Base
(KB)”, can be also called 7SHIELD ontology modelling, will be described below.
The 7SHIELD ontology was based on Semantic Sensor Network (SSN) ontology
and the OWL language was used.

In Fig. 5 the 7SHIELD ontology, that consists of classes in high level and
their entities, is illustrated using Protégé3, which is an open-source ontology
editor and framework for building intelligent systems.

Fig. 5. List of classes as they are viewed in Protégé

2 https://www.7shield.eu
3 https://protege.stanford.edu/

https://www.7shield.eu
https://protege.stanford.edu/
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– DataSource: This class represents data that have been analyzed and a
result has been extracted

– Event: This class represents one of the primaries of the overall data model
of the information sharing environment. Event is an abstract entity which
has a subclass, the Observation

– Location: This class represents the place or position that something is in
or where something happens. The class is further divided into 3 subclasses
(PhysicalLocation, GeoLocation, Unlocation).

– Target: This class represents an object of attention or attack.
– 7SHIELD Platform: This class hosts other entities, particularly Sensors,

Detectors, Samplers
– ReportStatus: Its purpose is to make a report when triggered from an

event.

Finally, the purpose of the data converter module is to receive JSON data
as input and accordingly form the TURTLE Resource Description Framework
(RDF) data as output, for mapping them the RDF triplestore. TURTLE4 is a
syntax and file format for expressing data in the RDF data model. The JSON
data should be in the appropriate format in order to be converted to semantic
data (RDF triplets).

2.4 Crisis Classification & DSS Module

The main goal of the Crisis Classification (CRCL) & DSS module (Fig. 6) is to
enhance the decision-making processes, by providing real-time assessments of the
severity level of an ongoing physical and/or cyber-attack in critical satellite and
ground segments. To achieve this goal, a multi-level fusion approach is developed
which encompass methodologies for Information and Decision fusion.

At the Information Fusion level, the real-time (or “near” real-time) informa-
tion, generated by the fusion of heterogeneous data from detection modules, is
analysed by utilised machine learning techniques that are able to estimate the
severity level of a malicious event. Then, at the Decision Fusion level, decision-
making approaches will be tailored aiming to enrich the outcomes of the Infor-
mation Fusion level semantically with information extracted from Knowledge
Base. Hence, this process will estimate accurately, interpret and provide assess-
ments in terms of the severity level and classify the crisis events generated by
C/P attacks. This approach and the CRCL module are easily adjustable to fuse
information from various available modules depending on the field of application.

3 Experimental validation and evaluation

3.1 Evaluation of the Detection layer

Visual Object Detection for Activity Recognition. We have been exper-
imenting with various object detection models in order to achieve a working

4 https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/
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Fig. 6. CRCL module in 7SHIELD framework

solution. First, a Faster R-CNN two-phase detector model has been trained on a
specially collected dataset of over 20k samples. This model can detect 6 classes:
a UAV class, a Car class, a Bus class, a Truck class (which also include Van
instances), a combined Motorcycle/Bicycle class, and a Person class. We have
also experimented with a lighter (but less effective) model, namely an Efficient-
Det (φ = 0) model, which also included 6 classes (but with a few differences): a
Car class, a Bus class, a Truck class, a Bicycle class, a Motorcycle class, and a
Person class and was trained on 10k samples. The evaluation was performed on
a distinct specially chosen dataset of roughly 200 samples in order to cover the
requirement being set.

Table 1. VOD results using 2 different architectures

Object detection results using Average Precision (AP)

Faster RCNN

0.75330 (UAV) 0.57315 (bus) 0.75726 (car)

0.73409 (moto-bike) 0.82152 (person) 0.53351 (truck)

mean AP: 0.6954

EfficientDet φ = 0

0.4563 (person) 0.4668 (car) 0.3438 (bicycle)

0.5562 (bus) 0.3968 (motorcycle) 0.3790 (truck)

mean AP: 0.4332

As a first note for the results in Table 1, the results are not completely
comparable since they include somehow different classes. Nevertheless, it is clear
that the two-fold detector (Faster R-CNN) seems to perform better in the core
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detection part. The reported Average Precision values are much higher than its
counterpart EfficientDet. On the other hand regarding the efficiency of the model
EfficientDet is much lighter and faster by one order of magnitude. Regarding the
results for AR submodule it is not so easy to be evaluated because they are highly
dependent to the output of the VOD submodule.

Face Detection and Recognition. The experiments in this section were con-
ducted with the aim to (a) deploy deep learning face detection and recognition
models as a means of testing the development platform, (b) replicate and con-
firm the published evaluation results on public benchmarks and (c) make per-
formance comparisons and draw conclusions about the state-of-the-art. For each
task, three approaches were selected to represent the current state-of-the-art
landscape, i.e., for face detection, (i) TinyFaces [14], (ii) PyramidBox [26], (iii)
DSFD [28] and for face recognition, (i) Facenet [20], (ii) PFE [21], (iii) Arcface
[6]. Each one was evaluated in a benchmark dataset, appropriate for the task.
Specifically, for face detection the WIDER FACE benchmark was selected, and
for face recognition the LFW.

WIDER FACE [29] is a face detection benchmark dataset. It contains over
30000 images which mostly show people participating in various activities of
everyday life based on 61 event classes. The human faces appear with a high
degree of variability in scale, pose and occlusion. For each event class, predefined
splits consisting of 40%/10%/50% of the total amount of data exist as training,
validation and testing sets respectively.

Table 2. Face detection state-of-the-art evaluation

Method WIDER FACE AP (%)

TinyFaces (2017) [14] 90.7
PyramidBox (2018) [26] 94.3
DSFD (2019) [28] 95.5

The Labelled Faces in the Wild (LFW) [3] dataset is a database of face pho-
tographs designed for studying the problem of unconstrained face recognition.
The data set contains more than 13,000 images of faces collected from the web.
The people that appear in this dataset are known public figures like politicians,
athletes, actors, musicians and other various celebrities.

Table 3. Face recognition state-of-the-art evaluation

Method LFW Accuracy (%)

Facenet (2015) [20] 99.4
PDE (2019) [21] 99.6
Arcface (2019) [6] 99.7
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The evaluation metric for face detection is Average Precision. It is taken by
calculating the area under the Precision-Recall curve. Precision is defined as the
proportion of true positives (TP) out of all the detected faces and Recall as
the proposition of true positives out of all the annotated faces. In other words,
precision measures the accuracy of the detector and recall measures its ability
to retrieve the existing faces. Whether a bounding box detection counts as a
TP is decided based on its overlap with a ground truth box. The overlap is
measured by the Intersection over Union (IoU) threshold. Thus, detected faces
must have a good alignment with true faces in order to be considered correct. The
Precision and Recall metrics are calculated for every alignment threshold (from
most relaxed to most strict) to draw the Precision-Recall curve. The evaluation
metric for face recognition is Accuracy. The dataset is split to 10 equal parts,
where the first 9 are used for cross validation in order to select the optimal
distance threshold to achieve top accuracy. The 10th part is the test set from
which pairs of queries are given and the model decides if they belong to the
same person or not. This is a standard strategy for evaluating face verification
models, but it is also a good indicator of face recognition performance as well.

Tables 2 and 3 show the performance comparison of face detection and recog-
nition SoA methods respectively. There is an overall good agreement with pub-
lished results, with maximum deviation at 0.3%. Regarding face detection per-
formance in WIDER FACE, the three methods achieve high average precision,
especially the more recent approaches. From the ones that focus on leveraging
surrounding face context, the PyramidBox is the most superior. Regarding face
recognition performance in LFW, all methods perform extremely well, which
may indicate both superior performance of SoA and dataset saturation.

3.2 Validation of the Fusion layer

We also present the metrics about the current version of the 7SHIELD ontology,
we used the OntoMetrics tool, an online framework that evaluates the ontology
based on predefined metrics. The following tables present the results of the
aforementioned process. The Figure 7 contains the base metrics which show
the quantity of the ontology; numbers of triples, classes, object and datatype
properties and individuals.

3.3 Annotation Tool for the validation of the Decision layer

As mentioned above, the main issue in the utilisation of Machine Learning tech-
niques is the lack of annotated datasets, namely datasets that assess the severity
level of an attack with the specific characteristics of the attack (physical or cy-
ber). To overcome this, we designed and developed the Annotation tool that
aims to capture the knowledge and experience of experts in a qualitative, sim-
ple, fast and user-friendly way. The main idea of this tool is to generate scenarios
of physical or cyber attacks in specific locations/assets in pilot sites and request
experts to characterize those scenarios in terms of likelihood of the attack and
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Fig. 7. Basic ontology Metrics

potential consequence of it. Combining these two concepts we can assess the
severity level.

Fig. 8. Annotation Tool; (a)Login page, (b)Selection page, (c)Main page, (d)MongoDB

Annotation Tool is a Web Application. The users can access it through a
web browser with an active network connection. The users must first login,
using the credentials that were given to them. Then, at the selection screen, the
specific Satellite Ground Segment and the Event Category (cyber or physical)
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can be selected. Based on this selection random scenarios are generated. The
hypothetical scenario is represented under the ”Scenario” tag. The users, after
studying the random parameters, must select a ”Potential Consequence” and a
”Likelihood” value. Then, the annotated scenario can be submitted and stored
online in the MongoDB database. Automatically, the process continues and the
next non-annotated scenario appears. Finally, the estimation of the “Severity
level” is carried out, by relying on the risk matrix (Figure 9), that adjusts to the
project’s needs.

Fig. 9. Risk Matrix used to calculate Severity Level

4 Conclusions

In this work we present an overall framework for the detection, semantic in-
dexing and severity level estimation during physical attack scenarios in ground
segments of space systems. Our set of modules includes not only visual analysis
technologies but ontological representation and semantic indexing, coupled with
a crisis classification module that estimates the level of severity during a physical
threat. Finally, the annotation tool which has been developed is planned to be
distributed to operators of ground segments of space systems for the creation
of ground truth data that will be used in training, validating and testing the
future crisis classification algorithms. The annotation tool will also be extended
to cyber/physical threats in other critical infrastructures beyond the considered
ground segments of space systems.
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M.: Sosa: A lightweight ontology for sensors, observations, sam-

https://doi.org/https://doi.org/10.1787/5k41rbd1lzr7-en
https://doi.org/https://doi.org/10.1016/j.websem.2012.05.003
https://www.sciencedirect.com/science/article/pii/S1570826812000571
https://doi.org/10.18356/f4ae4888-en
https://www.un-ilibrary.org/content/books/9789210041805
https://ec.europa.eu/echo/sites/default/files/overview_of_natural_and_man-made_disaster_risks_the_european_union_may_face.pdf
https://ec.europa.eu/echo/sites/default/files/overview_of_natural_and_man-made_disaster_risks_the_european_union_may_face.pdf
https://op.europa.eu/en/publication-detail/-/publication/118dcd3d-b041-11ea-bb7a-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/118dcd3d-b041-11ea-bb7a-01aa75ed71a1
https://doi.org/10.2837/864404
https://doi.org/10.1109/CVPR.2018.00685
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1016/j.ssci.2019.09.015


16 G. Antzoulatos et al.

ples, and actuators. Journal of Web Semantics 56, 1–10 (2019).
https://doi.org/https://doi.org/10.1016/j.websem.2018.06.003

16. Limbu, M., Wang, D., Kauppinen, T., Ortmann, J.: Management of a crisis (moac)
vocabulary specification. Web: http://observedchange. com/moac/ns/(zuletzt be-
sucht am: 29-07-2014) (2012)

17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.: Ssd:
Single shot multibox detector. In: Leibe B., Matas J., Sebe N., Welling M. (eds)
Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science.
vol. 9905, pp. 21–37 (9 2016). https://doi.org/10.1007978-3-319-46448-0 2

18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-
time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

19. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39, 1137–1149 (2015)

20. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

21. Shi, Y., Jain, A.K.: Probabilistic face embeddings. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 6902–6911 (2019)

22. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. CoRR abs/1406.2199 (2014), http://arxiv.org/abs/1406.

2199

23. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selec-
tive, and robust. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2892–2900 (2015)

24. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019)

25. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient ob-
ject detection. In: 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 10778–10787 (2020).
https://doi.org/10.1109/CVPR42600.2020.01079

26. Tang, X., Du, D.K., He, Z., Liu, J.: Pyramidbox: A context-assisted single shot
face detector. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 797–813 (2018)

27. Wagenaar, D., Curran, A., Balbi, M., Bhardwaj, A., Soden, R., Hartato, E.,
Mestav Sarica, G., Ruangpan, L., Molinario, G., Lallemant, D.: Invited per-
spectives: How machine learning will change flood risk and impact assess-
ment. Natural Hazards and Earth System Sciences 20(4), 1149–1161 (2020).
https://doi.org/10.5194/nhess-20-1149-2020

28. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet:
A new backbone that can enhance learning capability of cnn. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition workshops.
pp. 390–391 (2020)

29. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: A face detection benchmark. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 5525–5533 (2016)

https://doi.org/https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/10.1007$\/$978-3-319-46448-0$_$2
https://doi.org/10.1109/CVPR.2016.91
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.2199
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.5194/nhess-20-1149-2020

	Severity level assessment from semantically fused video content analysis for physical threat detection in ground segments of space systems 

