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Abstract. Folk dances consist an important part of the Intangible Cul-
tural Heritage (ICH) of each place. Nowadays, there is a great amount of
videos related to folk dances. An automatic dance recognition algorithm
can ease the management of this content and enforce the promotion of
folk dances to the younger generations. Automatic dance recognition
is still an open research area that belongs to the more general field of
human activity recognition. Our work focuses on the exploration of exist-
ing deep neural network architectures for automatic recognition of Greek
folk dances depicted in standard videos, as well as the experimentation
with different representations of input. For our experiments, we have col-
lected YouTube videos of Greek folk dances from north-eastern Greece.
Specifically, we have validated three different deep neural network ar-
chitectures using raw RGB and grayscale video frames, optical flow, as
well as “visualised” multi-person 2D poses. In this paper, we describe
our experiments, and, finally, we present the results and findings of the
conducted research.

Keywords: Dance recognition · Deep learning · Folk dances · Intangible
cultural heritage.

1 Introduction

Folk dances comprise an important part of the Intangible Cultural Heritage
(ICH) of each place. They are associated with folk music and social events (e.g.,
celebrations, customs) and help people to maintain their cultural identity. In the
past, their preservation was only possible through their transmission from the
old generations, which often led to variations of the original dances. In modern
days, video recording has been the main mean of digitising and preserving the
different types of dances, either folk or contemporary. This fact led to a great
amount of related data, which can be exploited by machine learning technologies
for better understanding and automatic recognition of different types of dances
from computers.

Automatic dance recognition is a subdomain of the wider research area of
human activity recognition. This technology aims at the automatic categorisa-
tion of dances depicted in videos into specific categories based on the extracted
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features. Due to a multitude of constraints, dance recognition is a challenging
task for computer vision. Video resolution, frame rate, poor lighting, blurring,
complex backgrounds, and occlusions of dancers are just some noteworthy limi-
tations that should be considered. In addition, the usage of dance videos for the
wider problem of video classification is a more challenging task, as dance videos
belong to the category of highly dynamic videos and there is a great variety of
dynamics for the different dance types. Despite the challenges that automatic
dance recognition may face, such a system can be useful for a variety of appli-
cations in the fields of Cultural Heritage (CH) and education. For example, an
automatic system for the recognition of Greek folk dances can enhance dance
videos with metadata describing the type of the depicted dance. As a result,
these videos could be easily retrieved from big databases based on the recog-
nised type of dance facilitating the preservation and management of relevant
data to this kind of ICH. Moreover, automatic dance recognition can assist the
learning of different dances. For instance, an idea is to have a mobile application
that enables the user to capture a video sample of people dancing, return an
analysis result based on an integrated automatic dance recognition model and
be able to provide more information about this type of dance (e.g., steps, his-
tory, information about the music etc.). Another suggestion could be to exploit
automatic dance recognition to find the parts of a video that contain a specific
dance.

In this work, we focus on the recognition of Greek folk dances from a specific
area of north-eastern Greece, namely Thrace. Specifically, we experiment with
well known deep learning network architectures designed for general video clas-
sification, in order to create a system for automatic recognition of four selected
traditional Greek dances (Karsilamas, Hasapikos, Gikna and Baintouska). In
the context of our research, we have created a new dataset of YouTube videos
that depict the aforementioned Greek folk dances. In addition, we explored dif-
ferent types of input representations (raw RGB and grayscale frames, optical
flow and multi-person 2D poses of dancers). Our main contribution is the evalu-
ation and comparison of common deep learning architectures used for the more
general tasks of video classification and human activity recognition towards au-
tomatic dance recognition from videos. The challenge of this task is that the
networks should discriminate the motion features of each dance and not rely on
background features for the classification, as backgrounds are either the same
or similar for different dances. To the best of our knowledge, the selected archi-
tectures have not been used for the task of automatic dance recognition from
videos before.

The rest of this paper is organised as follows. In section 2, we briefly present
the most prominent related works in the general field of human activity recog-
nition and its sub-field of automatic dance recognition. Section 3 describes the
dataset we used for our experiments. In section 4, a quick presentation of the
network architectures is made, while training details and results of the conducted
experiments are provided. Finally, we conclude our paper with section 5, where
the main outcomes and future steps are outlined.
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2 Related Work

Automatic dance recognition belongs to the wider domain of human activity
recognition. In this section, we provide a summary of the most dominant works
related to human activity recognition and automatic dance recognition through
videos.

Human Activity Recognition: Early video classification and activity recog-
nition methods, like [25], were based on hand-crafted motion features extracted
from the pixels of the video frames that were exploited by machine learning
approaches, such as Bag-of-Words model [9]. In the last decade, the great per-
formance of deep learning in image classification led to its application also for
human activity recognition from video, finding ways to integrate the temporal
information too. Initial works developed fusion techniques to exploit temporal
information, like in [16], while others created two-stream Convolutional Neural
Networks (CNNs) [21], where one stream is fed with spatial information (e.g.,
video frame/image) and the second with the temporal information in the form
of stacked optical flow vectors. The combination of CNNs with Long Short-
Term Memory Networks (LSTMs) [6] was also tested as a solution. In addition,
CNNs with 3D convolutions were developed [14] to take into account the tem-
poral aspect, with promising results, such as C3D [24], I3D [4] and SlowFast
[8]. 3D Residual Networks (3D ResNets) [11] were also proposed for the task
of human activity recognition through video. In order to decrease the complex-
ity of the training procedure for the 3D networks, the idea of 3D factorisation
was introduced in P3D [20]. Temporal Segment Networks (TSN) [26] is another
deep learning architecture utilised for video-based human activity recognition.
Skeleton-based methods have also gained a lot of attention recently. The hu-
man skeletons in a video are mainly represented like a sequence of coordinates
that are extracted from 2D pose estimation algorithms [3]. The results of these
methods are unaffected by background variations and changes in illumination
conditions because only human skeletons are used for activity recognition. Graph
Convolutional Networks (GCNs) [28] is another famous method for human activ-
ity recognition. Finally, networks with attention, such as transformers including
TimesFormer [2], ViVit [1] and Video Masked AutoEncoders (VideoMAE) [23],
are explored in this direction too.

Automatic Dance Recognition: Three different methods for the extraction
of handcrafted features were explored in [15], along with a Bag-of-Words ap-
proach, for the recognition of five Greek folk dances. The authors of [10] explored
the problem of distinguishing Greek folk dances from other kinds of activities,
as well as from other dance genres, using video recordings. To achieve this, they
adopted dense trajectories descriptors along with Bag-of-Words (BoW) model to
present the motion depicted in the videos. For the classification step they have
used a Support Vector Machine (SVM). In [17] the authors present a system for
the classification of Indian classical dance actions from videos using CNNs that
were previously used for action recognition. Similarly, in [13] Indian classical
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dance classification is achieved through the use of a new deep convolutional neu-
ral network (DCNN) that is based on ResNet50. The above methods, though,
do not exploit temporal information, but only sets of specific poses depicted in
video frames. In [5] different approaches for automatic dance recognition from
videos are proposed, considering the temporal information. More specifically,
the authors present a comparison of numerous state-of-the-art techniques on the
“Let’s Dance” dataset using three different representations (video, optical flow
and multi-person 2D pose data). In [19] a differential evolutionary convolutional
neural network model is applied for the classification of dance art videos. The
dance videos were collected from large video websites and consist of seven dance
categories: classical dance, ballet, folk dance, modern dance, tap dance, jazz
dance and Latin dance. Automatic dance recognition approaches that combine
visual data with other types of data, like audio [27], were also proposed in the
literature. However, in the context of this paper we focus only on visual-based
approaches.

3 Dataset Description

Each country or either region has its own particular dancing style, which evolved
from its culture and history. In some dances, specific parts of the body are more
dominant than others, like legs and arms. Moreover, there are dances, where a
specific sequence of movements must be followed, while others allow the dancer
to create their own choreography.

Greek folk dances are mostly danced in a circle, where the dancers are con-
nected through their hands in different manners depending on the dance. There
are also dances that are danced in couples or more freely, where specific steps are
followed. In this work, we focus on the automatic recognition of four character-
istic dances of the region of Thrace in north-eastern Greece. These dances are: i)
Karsilamas, ii) Hasapikos, iii) Gikna and iv) Baintouska. Karsilamas is danced
in couples, where one dancer faces the other, without joined hands. Hasapikos,
Gikna and Baintouska are danced in a circle, where the hands of the dancers
are connected in different ways depending on the dance. You can find example
snapshots of these dances in Figure 1.

Our new dataset consists of videos that we crawled from YouTube. These
videos contain the four selected types of Greek folk dances performed at Greek
folk dance festivals in most cases. See Table 1 for more details. The dataset
cannot be public at the moment due to copyright issues.

1 https://www.youtube.com/watch?v=YIcJa0Te6z0
2 https://www.youtube.com/watch?v=LRqXRLQ4hQ0
3 https://www.youtube.com/watch?v=f61-KQeXtlo
4 https://www.youtube.com/watch?v=bjx8Vv5H7kst=62s
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Fig. 1. Examples of each dance category from our dataset: a) Gikna 1, b) Karsilamas
2, c) Hasapikos 3, and d) Baintouska 4.

Dance Karsilamas Hasapikos Gikna Baintouska

Number of Videos 15 15 15 15

Total Duration 40.02 min 37.35 min 31.92 min 28.02 min

Table 1: Number of videos used in our experiments and total duration per dance
category.

4 Experiments and Results

In this section, we briefly describe the deep neural networks that we utilised for
our experiments and the preprocessing of the input videos. We also provide de-
tails about the training procedure. Finally, we present our experimental results.

4.1 Network Architectures and Input Representations

In the context of our research, we experimented with three deep neural networks
that are widely used in the field of video classification, namely the C3D [24],
3D ResNet [11] and SlowFast [8] architectures that are briefly described bellow.
We choose SlowFast as it is a state-of-the-art network that has shown strong
performance on the problem of video classification and activity recognition and
its comparison to the other two baseline networks would give us interesting
outcomes.

C3D Architecture: C3D [24] comprises a 3D Convolutional Network (3D
ConvNet), which aims to address the problem of learning spatiotemporal features
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from videos. This architecture consists of 8 convolution layers, 5 pooling layers,
followed by two fully connected layers, and a softmax output layer.

3D ResNet Architecture: Residual Networks (ResNets) [12] introduced
the concept of the Residual Blocks. The core of the Residual Blocks is the Skip
Connection, which is a direct connection that skips some layers of the network.
These connections pass through the gradient flows of the network from later
layers to early layers, and facilitate the training of very deep networks. The need
for the Residual Block was the limitation of the number of stacked layers that
one can use to build a Deep CNN, as it has been observed that the conventional
CNNs have a maximum depth threshold. The difference of 3D ResNets compared
to the original ResNets is that they perform 3D convolution and 3D pooling.

SlowFast Architecture: The SlowFast network [8] was originally proposed
for video recognition. Its architecture consists of two pathways, namely the Slow
and the Fast pathways. The Slow pathway gathers spatial and semantic infor-
mation from images or sparse frames, and it works at low frame rates and slow
refreshing speed. On the other hand, the Fast pathway captures rapidly chang-
ing motion, as it works at high refreshing speed and temporal resolution. These
two pathways are finally fused by lateral connections. In this way, this network
takes into account both the static and dynamic content of a video.

Moreover, we experimented with different representations of input to feed the
above networks (See Figure 2). We tested the networks using the raw RGB and
grayscale frames. This means that the whole information depicted in the video
clips passed through the networks that automatically extracted the features that
can differentiate one dance type from the others. We also experimented with
optical flow data that can help us track how each pixel changes from one frame
to the next. Optical flow is independent of the visual information in the original
frames and emphasizes only motion information, which helps the network focus
on motion properties. We use the RAFT algorithm [22] for the extraction of the
optical flow in our experiments.

Fig. 2. Different input representations are used to feed the networks: (a) RGB video
frame, (b) RAFT optical flow and (c) multi-person 2D poses. Video source 5

For the extraction of the multi-person 2D poses, we utilised the AplhaPose
algorithm [7], which also supports pose tracking and, based on experiments,
has better results compared to OpenPose [3] and OpenPifPaf [18]. We have to
note here that we trained the networks using the “visualized” pose data that
practically are the grayscale images of the extracted pose skeletons. This repre-

5 https://www.youtube.com/watch?v=YIcJa0Te6z0
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sentation is also independent of the visual information in the original frames, as
well the body shape of each subject, and encodes only the body position, which
helps the network to focus on the spatio-temporal information of the body pose.

4.2 Training Procedure and Experimental Results

For the training procedure, a total duration of 20 minutes was used for each class
that correspond to a different number of videos per class, because the videos had
different durations. For validation and testing, 4 minutes per class were used,
respectively, that correspond to 3 videos per class. There was no overlapping
between the videos that were used for testing and those exploited in the training
procedure. This leads to a split of 80% for training, 15% for validation and 15%
for testing (consistent across experiments). Also, for every video of the final
dataset, the extraction of RAFT optical flow and multi-person 2D poses using
the AlphaPose algorithm followed (see Figure 1 ). Afterwards, each video with
the specific representation according to the experiment, was splitted into clips
of a constant number of frames. In this work, 30 frames per clip were used that
correspond to a duration of 2.36 seconds. This is due to the fact that we sample
every other frame and all videos were at 25 frames per second (fps). 30 frames per
clip showed better results as opposed to 15 frames (1.16 seconds) and this make
sense, if we consider that dances like Gikna and Baintouska have a similar form,
so a larger duration of a clip can capture more temporal information leading to
better discrimination. Each clip was then fed to the deep neural network, along
with its label to contribute to the training of each model. We trained all the
architectures from scratch using our dataset.

Each network received the aforementioned representations of the input, ex-
cept for the Slowfast, where the optical flow representation was omitted due to
the inherent ability of this network to capture rapidly changing motion through
the fast pathway. All the videos were spatially transformed according to the
input requirements of each network. The size of each sample is n channels ×
30 frames × Height × Width, where n=3 for RGB and RAFT representations
and n=1 for grayscale, Gray-RAFT and multi-person 2D poses. The batch size
is 20 clips and for all of our experiments we used an Adam optimizer and an
early stopping technique. Specifically, in the case where the validation loss was
saturated for 4 epochs, the learning rate was divided by 10. In case there was
no progress on validation loss for 20 epochs, the training was forced to stop.

For our experiments, we used a NVIDIA GeForce RTX 3090 GPU. This fact
restricted our ability to choose bigger batch sizes. We could increase the batch
size and spatial resolutions with the use of more than one GPU, which would
lead to improved classification results.

Below, we provide detailed information for the training of each architecture,
along with the corresponding results in terms of F1-measure (F1) and accuracy
(Acc).

C3D parameters and results: In the context of this paper, the C3D net-
work was trained from scratch. We spatially resize each sample at 112 × 112
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pixels according to the input requirements of the network. In the training pro-
cess we use Adam optimizer with a starting learning rate of 0.0001 for RAFT,
Gray-RAFT and Skeleton input representations, 0.001 for grayscale and 0.00001
for RGB.

Architecture F1 (clips) Acc (clips) F1 (videos) Acc (videos)

C3D-RGB 32.65% 35.33% 27.50% 41.66%

C3D-Gray 41.24% 50.92% 48.93% 58.33%

C3D-RAFT 53.20% 52.65% 66.43% 66.66%

C3D-Gray-RAFT 43.32% 42.90% 74.16% 75.00%

C3D-Poses 56.84% 57.82% 72.91% 75.00%

Table 2: Experimental results for the C3D architectures.

We find that C3D works best for the “visualised” multi-person 2D poses input
representation with RAFT to follow, having quite a difference from the rest of the
representations. This is something we would expect as these 2 representations are
independent of visual information and enable the network to focus on features
of body posture and limb movement, i.e. features related to dance.

For the categorization of an entire video, it is important that the model
correctly predicts the majority of the video clips that make it up. We notice
that for the C3D network a representation independent of visual information in
the original frames can do this with a notable difference.

3D ResNet parameters and results: In the context of this paper, we have
experimented with 3D ResNet-50 and 3D ResNet-101 testing the aforementioned
different input representations, while training the networks from scratch. We
spatially resized each sample at 224 × 224 pixels according to the input re-
quirements of the network. For the training of these networks on our dataset,
we have used Adam optimiser. The starting learning rate for 3D-ResNet50 was
0.0001 for all representations, while for 3D-ResNet101 was 0.001 for RGB and
Gray-RAFT input, 0.0001 for grayscale, RAFT and “visualized” multi-person
2D poses input.

Architecture F1 (clips) Acc (clips) F1 (videos) Acc (videos)

3D ResNet-50-RGB 49.10% 55.07% 58.93% 66.66%

3D ResNet-101-RGB 63.09% 62.23% 74.16% 75.00%

3D ResNet-50-Gray 48.12% 51.21% 47.62% 50.00%

3D ResNet-101-Gray 54.78% 62.94% 56.84% 66.66%

3D ResNet-50-RAFT 29.65% 29.55% 30.83% 33.33%

3D ResNet-101-RAFT 35.02% 36.30% 35.00% 41.66%

3D ResNet-50-Gray-RAFT 28.49% 28.55% 29.92% 33.33%

3D ResNet-101-Gray-RAFT 25.56% 34.72% 23.21% 33.33%

3D ResNet-50-Poses 45.51% 43.58% 52.14% 50.00%

3D ResNet-101-Poses 63.28% 65.44% 72.68% 75.00%

Table 3: Experimental results for the 3D ResNet architectures.
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3D-ResNet50 has a similar performance for RGB and gray input, which out-
performs the rest of the input representations. The performance decreases no-
ticeably for RAFT and Gray-RAFT representations, while for the “visualized”
multi-person 2D poses it is better than these two. The poor performance on
representations that are independent of visual information seems to be contrary
to what we might expect and perhaps finer tuning of the hyperparameters is
required to increase performance.

Similar results are given by 3D-ResNet101 which, however, achieves higher
performance overall than 3D-ResNet50 and gives the best results for the “visu-
alized” multi-person 2D poses, in line with our intuition. However, the results
for optical flow representation are also worse than the original frames, which
indicates that perhaps a better setting of the hyperparameters is required.

We notice that 3D-ResNet50 correctly predicts the majority of video clips,
thus categorizing more accurately the videos for RGB input relative to the rest
representations, while 3D-ResNet101 performs better for RGB and “visualized”
multi-person 2D poses.

SlowFast parameters and results: As part of our work, we have trained
the SlowFast architecture with a ResNet-50 and ResNet-101[12] backbone, speed
ratio α = 8, channel ratio β = 1/8 and τ = 16 on our dataset. We spatially
resized each sample at 224 × 224 pixels according to the input requirements of
the network. In the training process we used Adam optimizer and the starting
learning rate for SlowFast-ResNet50 was 0.001 for multi-person 2D poses input,
0.00001 for RGB and grayscale input, while for SlowFast-ResNet101 was 0.001
for RGB input, 0.001 for grayscale and multi-person 2D poses input.

Architecture F1 (clips) Acc (clips) F1 (videos) Acc (videos)

SlowFast-ResNet50-RGB 36.47% 43.92% 45.00% 50.00%

SlowFast-ResNet101-RGB 45.88% 53.93% 50.00% 58.33%

SlowFast-ResNet50-Gray 48.56% 56.65% 45.89% 50.00%

SlowFast-ResNet101-Gray 56.33% 65.38% 60.00% 66.66%

SlowFast-ResNet50-Poses 69.67% 70.52% 81.25% 83.33%

SlowFast-ResNet101-Poses 46.37% 48.37% 57.50% 58.33%

Table 4: Experimental results for the SlowFast architectures.

For the SlowFast-ResNet50 we notice that the simpler the input becomes from
the point of view of visual information, the network gets better performances
with the best performance being for the “visualized” multi-person 2D poses,
again following our intuition and what we would expect as the network does not
focus on information related to the space or the costumes of the dancers.

On the contrary, SlowFast-ResNet101 seems to be able to generalize better
when also given the visual information in the original frames comparatively with
the “visualized” multi-person 2D poses, something that may indicate a tendency
for overfitting, as the model is more complex in relation to SlowFast-ResNet50
and the “visualized” multi-person 2D poses representation is simpler in relation
to the original frames.
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For whole video classification, SlowFast-ResNet50 correctly predicts the ma-
jority of video clips, thus categorizing more accurately the videos for 2D skele-
ton input representation relative to original frames, while SlowFast-ResNet101
performs better for grayscale input representation, results that makes sense ac-
cording to the results per video clip.

5 Conclusions

In this paper, we focus on the task of automatic dance recognition, specifically
for traditional Greek dances from the region of Thrace in north-eastern Greece.
In the context of our research, we created a new dataset by crawling videos that
contain four different kinds of traditional Greek Thracian dances from YouTube.
The specific dance types that consist our dataset are Karsilamas, Hasapikos,
Gikna and Baintouska. We used this dataset in order to evaluate and compare
existing architectures that were previously used in the wider field of video recog-
nition and activity recognition for the more specific task of automatic dance
recognition. Towards this goal, we trained the C3D, 3D ResNet and SlowFast
architectures on our dataset, while also tested different representations of the
input (raw RGB and grayscale frames, optical flow and multi-person 2D poses).
Through our results, we observe that the representation of the input plays a
crucial role in the efficiency of the networks on the problem of dance recognition
from video and representations based on motion and multi-person 2D poses could
help the networks to learn essential information about the motion of the body
increasing the performance on the task. Moreover, we conclude that the “visu-
alized” multi-person 2D poses are giving the best performance in most of the
cases, in line with our intuition, with SlowFast network to be the most effective,
confirming its power to handle challenging activity recognition tasks.

One of the next steps for our research on the automatic recognition of Greek
folk dances is to extend our dataset by adding more videos per dance type or
experimenting with more dance types. Moreover, we consider some video pre-
processing techniques in order to remove non-relevant to dance parts of the videos
(e.g., titles, other scenes). As a future work, other architectures except for 3D
CNNs will also be examined, like networks with attention, such as transformers
(e.g TimesFormer [2], ViVit [1]) and video masked autoencoders (VideoMAE
[23]), in order to pretrain them in a large population of dance videos and then
fine-tune them for the dances of our interest to increase their performance.
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video vision transformer. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 6836–6846 (2021)

2. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for
video understanding? In: ICML (2021)

3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2019)

4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6299–6308 (2017)

5. Castro, D., Hickson, S., Sangkloy, P., Mittal, B., Dai, S., Hays, J., Essa, I.: Let’s
dance: Learning from online dance videos. arXiv preprint arXiv:1801.07388 (2018)

6. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2625–2634 (2015)

7. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: Rmpe: Regional multi-person pose estima-
tion. In: Proceedings of the IEEE international conference on computer vision. pp.
2334–2343 (2017)

8. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recog-
nition. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 6202–6211 (2019)

9. Foggia, P., Percannella, G., Saggese, A., Vento, M.: Recognizing human actions by
a bag of visual words. In: 2013 IEEE International Conference on Systems, Man,
and Cybernetics. pp. 2910–2915. IEEE (2013)

10. Fotiadou, E., Kapsouras, I., Nikolaidis, N., Tefas, A.: A bag of words approach for
recognition of greek folk dances. In: Proceedings of the 9th Hellenic Conference on
Artificial Intelligence. pp. 1–4 (2016)

11. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet? In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. pp. 6546–6555 (2018)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

13. Jain, N., Bansal, V., Virmani, D., Gupta, V., Salas-Morera, L., Garcia-Hernandez,
L.: An enhanced deep convolutional neural network for classifying indian classical
dance forms. Applied Sciences 11(14), 6253 (2021)

14. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence 35(1),
221–231 (2012)

15. Kapsouras, I., Karanikolos, S., Nikolaidis, N., Tefas, A.: Feature comparison and
feature fusion for traditional dances recognition. In: International Conference on
Engineering Applications of Neural Networks. pp. 172–181. Springer (2013)

16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition. pp. 1725–1732
(2014)



12 Loupas and Pistola, et al.

17. Kishore, P., Kumar, K., Kiran Kumar, E., Sastry, A., Teja Kiran, M., Anil Kumar,
D., Prasad, M.: Indian classical dance action identification and classification with
convolutional neural networks. Advances in Multimedia 2018 (2018)

18. Kreiss, S., Bertoni, L., Alahi, A.: Openpifpaf: Composite fields for semantic key-
point detection and spatio-temporal association. IEEE Transactions on Intelligent
Transportation Systems (2021)

19. Li, L.: Dance art scene classification based on convolutional neural networks. Sci-
entific Programming 2022 (2022)

20. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-
3d residual networks. In: proceedings of the IEEE International Conference on
Computer Vision. pp. 5533–5541 (2017)

21. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. Advances in neural information processing systems 27 (2014)

22. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
European conference on computer vision. pp. 402–419. Springer (2020)

23. Tong, Z., Song, Y., Wang, J., Wang, L.: Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. ArXiv abs/2203.12602
(2022)

24. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: Proceedings of the IEEE inter-
national conference on computer vision. pp. 4489–4497 (2015)
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