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Abstract—Recent developments in remote sensing have shown
that snow depth can be estimated accurately on a global
scale using satellite images through cross-polarization and co-
polarization backscatter measurements. This method does how-
ever have some limitations in low-land areas with dense forest
coverage and shallow snow, that is often found nearby urban
areas. In these areas, citizen observations can be fused with
satellite-based estimations to deliver more accurate solutions. To
that end, we use snow-related tweets that have been annotated by
artificial intelligence (AI) methods and are introduced in a novel
neural network model, aiming to increase the estimation accuracy
of the state-of-the-art remote sensing method. The proposed
model combines the estimated snow depth from Sentinel 1 images
with the number of Twitter posts and Twitter images that are
semantically relevant to snow. The use of instant social media data
for purposes of snow depth estimation is investigated, validated
and tested in Finland. Our results show that this approach does
improve the snow depth estimation, highlighting its potential for
use in civil protection agencies in managing snow conditions.

Index Terms—Sentinel 1 images, Backscatter measurements,
Snow depth, social media in-situ data, multimodal fusion.

I. INTRODUCTION

NORTHERN European countries, such as Finland, expe-
rience a very long winter season which can last several

months depending on the region, putting a lot of stress on
infrastructure. Also, extreme snow events, besides the benefit it
has on winter tourism, can also cause severe problems in elec-
tricity supply [1], traffic [2], agriculture and reindeer herding
[3]. Addressing these problems requires a well-organized civil
protection agency, as well as significant financial resources.
In fact, weather and climate related risks, including problems
due to snow events are specifically addressed in the Finland’s
National risk Assessment1. Recently, civil protection agencies
have adopted the use of remote sensing from a number of
platforms (e.g. satellite images and UAVs) in extreme event
management, with potential benefits in financial cost and
decision making. However, very often the remote sensing data
collected by these platforms are not available fast enough for
the decision making required in such events. Additionally,
malfunction of these platforms can lead to delayed decision
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making, very often with tragic consequences. Therefore, com-
plementary data sources may be used to fill this gap. So far
a fusion of social media with snow depth detection through
remote sensing techniques has not been examined before.
An example is given in Figure 1, with publicly available
information on Twitter about snow observations, either as
textual or visual content.

Fig. 1: Example of online available social media data from
Twitter posts in Finland

During the last decade, publicly available information from
social media (e.g. Twitter, Facebook, Instagram, and various
blogs) have made their debut in civil protection agencies
around the globe. They can be used as a snap-shot of the
public response to an extreme event and they are instant, with
a huge benefit to decision making. It turns out that when it
comes to breaking news, Twitter appears to have outperformed
traditional media. During the Sichuan 2008 earthquake, which
was responsible for 70.000 deaths, information regarding
an initial tremor was being disseminated by Twitter several
minutes before the main burst, and a similar case took place
during the 2008 Southern California earthquake as well [4].

Twitter data have been used to disseminate information
immediately after the Haiti 2010 earthquake providing an
insight regarding injured and trapped victims as well as dam-
aged buildings [5]. Pollution related health issues is another
potential field where Twitter could be used given that the
public response through this platform is strongly correlated
with the ambient air quality in major urban areas [6]. Twitter
can also be an effective source of data in other extreme events
scenarios. For example, it has been shown as an effective
source of data that can be used to identify flood “hot-spots”
immediately after these take place, which will, in turn, be used
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to task remote sensing data collection (Satellites and UAVs)
for a more detailed analysis during the crisis management [7].

Given that microblogging has evolved into such a
widespread tool during a crisis, we attempt to expand its use
and highlight its potential in managing snowfall events. Our
goal is to highlight possible correlation between snow depth
and the amount of microblogging associated with this event.
This would suggest that the amount of the related information
that is shared among the public could be used as a proxy for
the intensity of the meteorological event.

Traditionally, SAR C-band backscatter satellite measure-
ments have been used to study snow melt [8], [9], based
on the high dielectric losses of water that lead to a reduced
backscatter coefficient over wet snow compared to surfaces
that are snow-free or covered by dry-snow. For snow depth, C-
band satellite backscatter measurements were used early on in
the past, but only in co-polarization, and showing only limited
sensitivity [10], [11]. On the other hand, cross-polarization
backscatter has been used to estimate snow depth in the past,
but only locally using tower installations [12]. Recently, a
new method that utilizes the ratio of cross-polarization (σ0

vh)
to co-polarization backscatter (σ0

vv) has been implemented
on Northern Hemisphere mountainous regions, exhibiting a
promising snow depth estimate [13]. In our case this methodol-
ogy is applied in a near-urban area around the city of Helsinki.

Fusing a variety of remote sensing data has been addressed
in past studies, for example for land use classification [14],
[15], showing that a multi-modal or cross-modal learning pro-
vides a significant advantage over single modal applications.
In this letter, we use a different approach and we fuse satellite
data with social media data, and more specifically we enhance
a state-of-the-art snow depth estimation approach [13], with
the use of additional in-situ data from citizens (Twitter posts
and images). Fusion of remote sensing data with social media
is something rather new and will likely draw more attention
in the coming years.

II. METHODOLOGY

The proposed methodology (Figure 2) combines Sentinel 1
images and Twitter data that are highly correlated with actual
snow conditions.

A. Snow depth estimation using Earth Observation data

a) Pre-processing: Pre-processing of the raw satellite
data (Sentinel 1) is carried out through the Sentinel Applica-
tion Platform (SNAP2) and includes thermal noise removal,
radiometric calibration, terrain correction and linear to dB
transform. Two separate locations are chosen for this in order
to validate the results from the satellite derived snow depth
(Section III). Given that Southern Finland is covered to a large
extent by forests, which attenuate backscatter, we mask out
these areas till we are left with the open grassy and farmland
areas. Additionally, we mask out water areas (lakes) regardless
of whether the water bodies are frozen or not.

In order to properly process the backscatter data that often
come from different orbits we need to remove the static bias.

2https://step.esa.int/main/toolboxes/snap/

First we average 1-year of backscatter data for each orbit
separately, and then average for all orbits. The static bias for
each orbit is estimated as the difference between the all orbit
mean and the specific orbit mean, which is subtracted from
the backscatter time series for the corresponding orbit. Also,
before computing their ratio, co-polarized and cross-polarized
backscatter are re-sampled and projected onto a coarser 1Km2

grid by linear averaging, which also helps reduce speckle
noise. If more than 20% of the pixels, corresponding to the
native Sentinel 1 resolution, are assigned as water or forest
when they are projected onto the coarser grid, the 1Km2

average is automatically removed from the analysis.
b) Snow depth estimation from Sentinel 1: The first step

in estimating the snow depth is to estimate the snow index
[13] as follows:

SI(i, t) =


max(0, [SI(i, t− 1) +BR(i, t)−BR(i, t− 1)])

if SC(i, t) = 1

0, if SC(i, t) = 0

where SC is the snow cover, BR represents the ratio
of backscatter radiation in cross-polarization (VH) and co-
polarization (VV) if the backscatter is given in linear scale.
However, if the backscatter is given in dB the difference must
be used instead. We rescale the snow index into snow depth:

SD(i, t) =
a

1− bFC(i)
SI(i, t) (1)

where a = 1.1dB−1 and b = 0.6 are constants and FC is the
evergreen forest cover fraction (dimensionless) [13].

B. Citizen observations about snow and reporting on social
media

1) Representation of Twitter text : Starting with the text
representation, we used the state-of-art algorithm Bidirectional
Encoder Representation from Transformers (BERT) [16].
BERT involves an attention mechanism that learns contextual
relations between words in a text. BERT’s goal is to generate
a language model (LM), and the used mechanism reads the
entire sequence of words at once, contrary to directional
models (e.g. n-gram LMs [17], and neural network LMs [18]
that read the text input sequentially. Therefore, it is considered
non-directional, that allows the model to learn the context of
a word based on its surroundings. In order to capture the text
representation of the whole tweet, we used an existing pre-
trained model in Finnish language called ‘bert-base-finnish-
cased-v1’. Thus, the input in the BERT model is a Twitter
text and the output is a feature vector of length 768.

2) Logistic regression classification in Twitter text (tweet):
A Logistic Regression (LR) model is trained to classify Twitter
posts (short text) as relevant or not to snow. This disambigua-
tion allows the removal of tweets that refer to metaphoric
meanings of the word “snow” or synonyms of it. The model
is trained by using the manually annotated data provided by
domain experts (i.e. Finnish Meteorological Institute) and a
grid search is realized in order to identify the best parameters.
We report that a basic logistic regression model is developed
with the inverse of regularization strength parameter, usually
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Fig. 2: The proposed framework for snow depth estimation using Earth Observation (EO) and social media data. The visual
concept snow is extracted, the relevance of the Twitter text to the concept snow is estimated from text classification and the
snow depth is estimated from Sentinel 1 images.

denoted by C, equal to 31.57. This model was trained and
validated on a dataset of 7,710 tweets, out of which 3,877
where annotated as irrelevant (50.3%).

3) Deep Learning for visual concept (snow) extraction on
Twitter images: A framework different to text classification of
the tweets has been used to extract visual concepts from the
subset of tweets that include images. The target is to count the
number of Twitter images per day that illustrate snow. To that
end, we used a 22-layer GoogleNet network [19] that was
trained on 5,055 ImageNet concepts [20]. At this stage, the
classification layer of the network, which is a fully connected
layer, has dimension equal to 5,055, i.e. the total number of
given concepts. Additional fine-tuning is performed so as to
reduce the number of concepts to the 345 SIN TRECVID
concepts3, which involves replacing the classification layer
with dimensionality 5055 with a fully connected classification
layer with dimension equal to 345. The concept “snow”, which
is defined as: Snow falling or already accumulated on the
ground) is one of the TRECVID 345 concepts. Thus, this
framework receives as input an image, then the fine-tuned
Deep Convolutional Neural Network (DCNN) is tested on
the specific image and a list of concepts along with their
probabilities is produced. This framework, was trained on
two datasets: a) the TRECVID SIN 2013 dataset and b)
the PASCAL VOC 2012 dataset, achieving a Mean Average
Precision of 80%. If the concept “snow” is ranked among the
top-10 concepts with probability higher than 0.01, then we
consider that the image contains the concept. Such values are
very common in concept extraction, where our neural network
obtain probability values even less than 10−4 in case a concept
does not exist in the image. Concepts are extracted from all
the Twitter images, and 1,118 have been found to contain the
concept “snow”.

3https://www-nlpir.nist.gov/projects/tv2015/index.html#sin

C. Correlating social media observations with snow depth

The snow depth estimate can be, in some cases, strongly
correlated with the actual measurements, and weakly cor-
related in other. Even in the case when the correlation is
significant, severe biases may exist due to an overestimation or
underestimation of the actual measurements. To reduce these
biases we use regression analysis to compute a new estimate
of the snow depth, Ŷt:

Ŷt = α1SD(t) + α2It + α3Tt + β (2)

where SD is the estimated snow depth from Sentinel 1
images only [13]. Moreover, we denote by Tt and It the
number of relevant tweets per day t, or the number of
Twitter images that contain the concept snow, respectively.
The coefficients α1, α2, α3, and β are constants.

The proposed model of Eq. (2) is using SD(t), Tt and It,
showing the added value of social-generated data assets, which
is either estimated from Logistic regression classification in
Twitter text or a DCNN model on Twitter images to count the
number of posts that are relevant to snow.

III. EXPERIMENT AND RESULTS

A. Dataset description

Regarding snow depth, we use in-situ measurements from
four sites around the city of Helsinki (Figure 3), for validation
purposes. All four sites are located in areas with intense urban
development, which is ideal for this study given that we need
to accurately represent the snowfall conditions of the area
where the public response (Twitter) takes place.

11,024 tweets were collected, covering a period of 151
days, i.e. from November 2018 till March 2019. The Twitter
Streaming API4 is used to collect relevant Twitter posts. The

4https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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Fig. 3: Area of interest and measurements from four pilot sites
in Finland.

collection is keyword-based, where Finnish words for snow
(e.g., lumi, lunta, lumeen) have been used as queries. This
dataset was manually annotated and was split into a training
and testing dataset consisting of 5783 and 1927 respectively.
The mean precision, recall, accuracy and F-score that were
achieved are 73,28%, 73,58%, 73,5% and 73,43% respectively.
Eventually, the model is validated on a set of 11,024 new non-
annotated data, and the model estimated 6,097 tweets (55.3%)
as relevant and 4,927 (44.7%) as irrelevant.

B. Correlation between social media and snow depth

From a close inspection of the daily in situ snow depth
measurements (not shown) and the Twitter time series (text-
based or image-based) we can see that the three largest snow
events (during 09, 17, and 29 January 2019) coincide with
peaks in tweeted snow images and number of relevant tweets
which took place the same or the next day. We denote by
ρ(A,B) the correlation coefficient between two variables A
and B. The corresponding estimated Pearson correlation is
denoted by r(A,B), which results the following outcomes
with the average in situ snow depth Y :

• r(Y, It) = 0.56, positive and statistically significant
• r(Y, Tt) = 0.51, positive and statistically significant

C. Data fusion between social media and Sentinel 1 images

The satellite derived snow depth of Eq. (1) is estimated only
based on Sentinel 1A measurements during Dec 2018-March
2019. During the study period (2019 winter), Sentinel 1B satel-
lite did not give any measurements for the area of Helsinki in
IW mode, and are given in EW mode instead due to the Baltic
Sea Ice campaign, limiting our snow depth estimate to every 6
days only in area A and with a slightly increased frequency in
area B. Additionally, we exclude the snow depth computation
during the period between late February to March, given the
fact that the liquid water from melting snow during the melting
period overwhelms any backscatter signal from shallow snow.
The resulting estimated snow depth is poorly correlated with
the in situ measurements, i.e. r = 0.13 for area A and r = 0.41
for area B. This is most likely due to the fact that the snow

(a) Area A

(b) Area B

Fig. 4: Variation of in situ and satellite derived snow depth.
The estimated snow depth based on the 1D, 2D and 3D
regression model is also shown. The data are only presented
for the dates when the Sentinel 1 backscatter is available.

was shallow in the area of Helsinki, which did not allow
the [13] method to exhibit its full potential. However, here
is exactly where the use of Twitter data are fused with the
satellite-based estimation to provide an improved estimation.
The improvement is measured with the Mean Squared Error
(MSE), that represents the deviation between the in situ snow
depth measurements with each model.

The positive correlation between the tweets and the snow
observations is a necessary condition that allows us to fuse
these two through a regression model. This can be seen in
more detail as we build the regression model, based on the
correlation between the in situ snow depth and the number of
tweets (variables It and Tt).

The Sentinel 1 derived snow depth exhibits a large mean
square error (MSE) when compared to the actual snow depth.
This is mainly the result of outlier points like the one during
February the 16th (Figure 4). A 1st order (1D) regression
model, which uses only the estimated snow depth, can remove
the effect of such outliers by utilizing the linear relationship
between the predictor (Sentinel-1 derived snow depth) and
the in situ snow depth Y . The resulting snow depth Ŷ has
a much smaller MSE with no outliers. However, what needs
to be examined is whether this can be improved by adding
the information given by social media. It turns out that a 2nd

order model (2D) expressed by the equation

Ŷt = 0.17SD(t) + 1.27It + 0.83 (3)
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exhibits a smaller MSE for area A, reduced by 67% compared
to the 1st order model, highlighting the importance of social
data. The regression coefficients show that the added value is
mainly attributed to the Twitter data, which is because this
variable has a larger correlation with the in situ snow depth.
If we use the text-based tweets instead, the reduction in MSE
for the same area is similar, but with a different regression
equation:

Ŷt = 0.15SD(t) + 0.20Tt − 1.47 (4)

The question raised here is whether using both Twitter
variables Tt and It at the same time would make any sense.
The resulting regression model is:

Ŷt = 0.16SD(t) + 0.60It + 0.13Tt − 2.32 (5)

which further reduces the MSE by 10% for area A, as it is
shown in Table I. This indicates that these variables can be
used together. We can also see that the contribution of the
information from social media is not shared equally, with a
much larger contribution from the image-based tweets. This is
due to the fact that It has a larger correlation with the actual
snow, and a smaller weight is given to Tt which only accounts
for the added skill to It.

The comparison of the models, presented in Equations (3),
(4) and (5) with respect to MSE are presented in Table I.

Snow depth Ŷ (cm) MSE (Area A) MSE (Area B)
Ŷt = SD(t) 3265.85 5314.46

Ŷt = α1SD(t) + β 164.23 152.68
Ŷt = α1SD(t) + α2Tt + β 60.81 68.81
Ŷt = α1SD(t) + α2It + β 54.64 54.99

Ŷt = α1SD(t) + α2It + α3Tt + β 47.11 54.98

TABLE I: Mean square error (MSE) between in situ snow
depth and the proposed snow depth estimates.

IV. CONCLUSION

The goal of this letter is to evaluate the potential for using
satellite backscatter measurements to estimate snow depth in
areas that experience a shallower snow and are much more
densely forested, and how we can combine these with instant
social media data to augment our estimate. Citizens act as
sensors generating multimodal in-situ data with short text and
informative images that are further utilized to enhance state-
of-the-art models for snow depth estimation. Results show
that despite the limitations of the backscatter methodology to
estimate snow depth, significant improvement can be achieved
through the use of regression analysis and social media data.
At first, the linear relationship between the snow depth esti-
mate and the in situ snow depth, allows the removal of most
of the bias and the noise. To a second degree a fusion of
Twitter data into the regression model allows an additional
bias removal, which is the epicenter of this work.
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