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ABSTRACT

Accurate and timely flood mapping is important in emer-
gency management during and after extreme flood events
which can be greatly served by Synthetic Aperture Radar
(SAR). This work is focused on open-land regions where
a custom annotation based on expert knowledge and NDFI
is used. Research on SAR flood detection is mostly based
on histogram thresholding that has low time complexity and
seems ideal for emergency response, although human inter-
vention is needed. Machine learning methods have fewer
errors and minimize the need for human intervention but their
computational complexity is higher. This work aims to pro-
vide a lightweight convolutional neural network baseline for
pixel-wise time series classification in flood monitoring on
SAR satellite image time series. Quantitative and qualitative
evaluation of results indicate that the approach is promising.

Index Terms— Sentinel-1, SAR, flood detection, time se-
ries classification, deep learning, CNN

1. INTRODUCTION

Extreme geohazard phenomena are more and more frequent
due to climate change. One of them are extreme flood events
that may also be enhanced because of human intervention in
the environment. Therefore the societal, economical and envi-
ronmental impact is significant, and for this reason rapid and
accurate flood mapping is equally important in emergency re-
sponse management and long-term planning.

One of the most useful means for flood mapping is the
use of Big satellite Data and, in particular, Synthetic Aperture
Radar (SAR) has been proved to show quite a lot of advan-
tages compared to multispectral/optical sensors. It provides
usable data regardless of solar illumination and weather con-
ditions which is a reason for being an excellent tool for flood
monitoring. However, SAR data do not come without a price
because radar backscatter is affected by many factors which
makes interpretation non-intuitive and difficult especially to
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non-experts. Some factors are related to the atmospheric con-
ditions and the orbital geometry of the satellite during the
acquisition, while others depend on the Earth’s surface mor-
phology. Regarding surface morphology three separable ef-
fects can be distinguished a) topography b) surface dielectric
properties and c) surface roughness. For the flood detection
problem, surface roughness is the crucial factor that mainly
determines the backscatter amplitude.

The reasoning behind SAR flood detection is that wa-
ter acts as a specular reflector which results in very weak
backscatter. As a result, the backscatter of a given region
becomes lower after flooding. However, this reasoning may
change due to alteration of various surface characteristics
that are interconnected with surface roughness. According
to [1] those are land cover classes, weather conditions, and
geometry of the target itself as well as relative to the sensor
Line of Sight. Concerning land cover classes, the backscatter
becomes higher after an event in urban environments and
canopies. This is owned to double bounce effects of the radar
beam between water and buildings/canopies [1, 2]. In addi-
tion, similar counter-intuitive effect holds for targets such as
roads which have backscatter similar to water, thus making
it unfeasible to detect a change due to flooding. Last but
not least, weather conditions such as strong winds result in
a weaker than expected decrease of backscatter since they
increase the roughness of the water surface. In addition, the
aforementioned effects depend on SAR polarization channels
[3], resulting in different channels revealing different kind
of information. For this reason, using all available channels
seems to have an assisting effect in flood detection [4].

Flood detection using SAR data can be categorized ac-
cording to the number of dates used [1], i.e. single date, dual
date and multiple dates. The number of dates also defines the
range of techniques that can be used. For example, a time
series analysis can only be applied on the third case, while se-
mantic segmentation can theoretically be applied in all cases.

Core flood detection approaches regardless of number of
images are thresholding, change detection [5], change detec-
tion and thresholding [6], supervised [7, 8], semi-supervised
[9, 10] and unsupervised [2] image classification based on



classical machine and deep learning. Multi-temporal pixel-
wise time series approaches such as [11, 12], despite being
lightweight, do not exploit the temporal autocorrelation, as
they treat the time series using statistical analysis without
any learning procedure. On the other hand, sophisticated
deep learning methods may be more accurate but they have
a high computational complexity. Our approach aims to
tackle this gap by exploiting the temporal information using
a 1D-temporal Convolutional Neural Network (CNN) [13].

This work focuses on open-land flooded areas using a
temporal convolutional neural network framework on VV
and VH Sentinel-1 polarization channels for flood event clas-
sification in satellite image time series. To our knowledge,
the proposed approach is the first one that relies on pixel-
wise SAR time series classification using deep CNN for flood
detection. Thus, our main contribution is that we provide a
pure time series classification CNN-based baseline (inspired
from [14, 13]) that exploits the autocorrelation of pixel-wise
Sentinel-1 SAR time series of VV and VH channels in a
supervised deep learning setting and at the same time is
lightweight, flexible and tuned for rapid flood mapping.

2. METHODS & MATERIALS

2.1. Dataset

The area of interest (AOI) is the wider Monfalcone region
(N. Italy) and is defined by (12.801928, 46.171155) and
(13.733412, 45.659611) geographical coordinates. A time
series of Sentinel-1 A/B IW Level-1 GRD, path 95, descend-
ing node images was acquired from Alaska Satellite Facility
Data Search Vertex. The downloaded data represent the year
2019 which results in 61 images with a constant sampling
period of 6 days, and the flood event happened between the
15th and the 27th of November with a peak on the 21st. Some
distinctions that need to be made at this point are a) the com-
plete time series was used for the multi-temporal speckle
filtering b) data from August to December 3rd were used for
exploration and c) data from August to November 21st were
used for the annotation and modelling.

2.2. Pre-processing

The image pre-processing steps have been carried out in
SNAP Toolbox. These are: a) image subset; b) orbit file
application; c) thermal noise removal; d) calibration to σo;
e) range-Doppler terrain correction with SRTM 3-sec as
DEM and WGS84/UTM zone 33N as reprojection CRS us-
ing nearest-neighbour interpolation; f) co-registration based
on geo-location using nearest-neighbour interpolation and
stack creation; g) multi-temporal speckle filtering (7x7 Lee
filter); h) linear to dB scale conversion. The dataset used for
annotation and modelling is composed of 19 images with the
last one being November 21st.

2.3. Reference data

A known issue in flood detection is the scarcity of reference
data due to difficulties in generating/acquiring them precisely
and on time. Two curated datasets have been released recently
for that purpose [15, 16] but they are inflexible when one
desires to apply custom preprocessing and specific timestep
length, among others. In addition, the reference data source
used widely in the remote sensing community is the Coperni-
cus Emergency Management Service1. However, these come
with their own limitations such as restricted number of events
and geographical coverage, since their generation depends on
regional authorities’ request for service activation. We note
that the service is widely based on optical data which usually
come with cloud coverage during an event.

Taking all these into account, we create reference data by
combining expert knowledge from the local water authority
and feature engineering. Hydrology experts of the AOI from
Alto Adriatico Water Authority2 (AAWA) delineated the re-
gions with high probability of flood occurrence. Following,
the Normalized Difference Flood Index (NDFI) [11] was cal-
culated on the pre-processed image stack (in linear scale).
This is an index-based thresholding approach that aims to
depict open-land temporary waters by using a quasi-fixed
threshold value. For the threshold value after trial-n-error
we used the suggested 0.7 above which floods are denoted.
Finally, 32,707 pixels that fall in AAWA delineation and have
NDFI over 0.7 were annotated as flood, while 34,053 pixels
that do not satisfy that condition were annotated as non-flood
constituting a balanced training dataset.

We then produce a time series cumulative statistics graph
for VV and VH Fig.1 aiming to validate the assumption that
time series of flooded pixels are characterized by a drop in
backscatter. In particular, a temporal pattern with small dis-
persion is clear with a sudden drop on November 21st which
denotes the peak of the flood. On the other hand, pixels an-
notated as non-flooded show a relatively stable average signal
with large dispersion which is owed to the variety of differ-
ent sub-classes that it depicts such as permanent water, urban
environments etc.

(a) (b)

Fig. 1. Sub-figures show the pixel-wise time series for VV
and VH that were annotated as flood/non-flood.

1https://emergency.copernicus.eu
2https://distrettoalpiorientali.it



A/A lr Loss OA [%] F1-score [%]
Train 0.01 8.78e-03 99.7398 99.7349
Test 9.02e-03 99.7303 99.7243
Train 0.1 7.87e-04 99.9771 99.9769
Test 8.04e-04 99.9735 99.9725
Train 1. 4.13e-06 100 100.0
Test 4.35e-05 99.9984 99.9983

Table 1. Loss, Overall Accuracy (OA) and F1-score on
train/test sets for different learning rate (lr) initialization val-
ues. Metrics are averaged over 30 model runs.

2.4. Dataset preparation

The per-pixel annotated time series were extracted from the
19-image stack. As a result, the model input data shape
is (samples, timesteps, channels) where samples denote the
number of the time series (66,760), timesteps the sequence
length (19) and channels the two SAR polarizations (2). They
were z-score standardized using the mean and standard de-
viation across all training samples, timesteps and channels
at once. This scaling approach was used because it keeps
the relative distances between input channels stable, which is
needed when applying convolutions across time and channel
dimension. Finally, the labels were one-hot encoded which
resulted in a (samples, number of classes) vector where the
two number of classes denotes flood/non-flood.

2.5. Architecture

The network is composed of one batch normalization, two
convolutional (8 units), one fully-connected (4 units) and a
softmax layer (2 units). Further settings used are ReLU acti-
vation function, categorical cross-entropy loss, and Adadelta
optimizer3 with 0.1 initial learning rate. Regarding convolu-
tional layers kernels size was set to 5 and stride to 1. The
modified settings from [14] are a result of experimentation.
In particular, a technique to handle learning rate decay and
noisy gradient information, such as Adadelta, was imperative
since simple use of Adam with various learning rates made
the learning process unstable.

The basic reasoning behind the network is to learn the
temporal pattern and in particular the presence of a local min-
imum value that will occur at the last 1 timestep of the se-
quence. This also means that the network should not learn
that a sequence represents a flood event assuming there is
global or local minimum value(s) in a timestep prior to the
last one. Therefore, for flood detection on a given date the
user should use a fixed-length time series as input where the
last date should be the one s/he wants to predict on. Based on
the architecture and the training setting the model is capable
of predicting an ongoing flood event.

3https://arxiv.org/abs/1212.5701

2.6. Experiments

The experimentation is based on a 50/50 and 80/20 train/test
and train/validation split, respectively. Acceptable model fit-
ting was achieved using an early stopping mechanism with a
patience of 10 epochs according to validation set loss. Train-
ing epochs were set to 60 with a batch size of 32. The ex-
periments were ran on a CPU machine using Tensorflow4 and
Keras5.

After deciding on the network baseline architecture we
experimented with different learning rates producing relevant
error metrics Tab. 1. Adadelta comes with a suggested initial
value equal to 1, however 0.1 showed the best bias-variance
tradeoff.

(a) Nov 9th (b) Nov 15th

(c) Nov 21st (d) Nov 27th

Fig. 2. Figure shows prediction of the CNN model for four
dates. The temporal CNN model was trained with November
21st as the last date.

3. RESULTS AND DISCUSSION

After training the model the results were evaluated quantita-
tively and qualitatively. For the former case, average error
metrics such as Loss, Overall Accuracy and F1-score were
calculated for train and test sets over 30 model runs. For the
latter case, flood predictions from the best model were used
on time series with a temporal lag relative to the time series
used for training. For instance, in Figure 2d a time series that
begins on August 11th and ends on November 27th (total 19
images) was used to predict for November 27th. Same reason-
ing was applied for the rest of the dates.

From Figures 2a-2c and cross-comparison with VV and
VH False Color Composites (R: pre-event, G: post-event, B:
post-event) for the three dates we have noticed that the model
is accurate. On the contrary, the model predicts a false pos-
itive ongoing flood at the left red region for Figure 2d (Nov

4https://www.tensorflow.org
5https://keras.io



27th) where the backscatter value starts to increase as seen in
Figure 1. Although, the results are accurate on dates prior to
the event, i.e., flood is not detected. A possible explanation of
this is that the model needs more variability in the training set,
which in turn will make it able to consider edge cases such as
the one described.

Last but not least, the wide majority of model predictions
for November 21st coincide with the thresholded NDFI pix-
els that were not used for train/test. Additionally, it also de-
tects floods on regions that were edge cases for NDFI. In other
words, the result of a smaller NDFI threshold coincides with
the model output (i.e., more floods were depicted) but the for-
mer is more noisy. This leads to the conclusion that the model
has the potential to detect floods as good as NDFI does with
less noise and no human intervention, which is an important
advantage in rapid flood mapping.

4. CONCLUSIONS

In this work we presented a time series classification for flood
detection using a deep CNN approach. The main advantage
of this model is that it offers a lightweight way to indicate
ongoing flood events in open land without human interven-
tion. In addition it has high predictive power during a flood
event occurrence, and its lightweight training makes it easy
for quantitative error assessment. In the future we plan to ex-
plore additional features to be used as input in the temporal
neural network architecture for other disasters beyond floods.
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