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Abstract. Identifying terrorism-related key actors in social media is
of vital significance for law enforcement agencies and social media or-
ganizations in their effort to counter terrorism-related online activities.
This work proposes a novel framework for the identification of key ac-
tors in multidimensional social networks formed by considering several
different types of user relationships/interactions in social media. The
framework is based on a mechanism which maps the multidimensional
network to a single-layer network, where several centrality measures can
then be employed for detecting the key actors. The effectiveness of the
proposed framework for each centrality measure is evaluated by using
well-established precision-oriented evaluation metrics against a ground
truth dataset, and the experimental results indicate the promising per-
formance of our key actor identification framework.
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1 Introduction

Social media have gained an important role over the past years for the every-
day communication of people around the world, by overcoming the barrier of
distance and allowing for the direct and instantaneous connection and exchange
of information among individuals. The popular social media platforms, such as
Twitter, have provided the ground for the development of online social networks
among users sharing common ideas or interests. A key property of these networks
is their potential to facilitate the diffusion of information among their members.
However, their immense social influence has also proven very useful for terrorist
groups aiming at spreading their propaganda or recruiting new members [17].

In this context, social media networks are of great interest to Law Enforce-
ment Agencies (LEAs) and social media organizations in their efforts to counter
terrorism online. Their focus is on monitoring terrorism-related activities on so-
cial networks towards the identification of their most influential members (key
actors) who play a significant role in the connectivity of the entire network and
facilitate the diffusion of terrorism-related information to large audiences. Such
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social networks, including Twitter-based networks [1], exhibit a scale-free topol-
ogy [3, 14] making them extremely vulnerable, in terms of their connectivity,
when targeted attacks are performed on their most central nodes. As a result,
the detection and potential suspension of their (terrorism-related) key actors is
of vital significance for all interested stakeholders.

A social media network is formed by capturing the interactions taking place
either directly between social media users, or indirectly between users and social
media posts (typically published by other users). Social media platforms offer a
variety of interaction types to their users, each serving a different purpose. For
instance, a Twitter user may mention1 other users within their social media posts
(tweets), reply to or retweet2 tweets of interest, and may also have a follower
and/or a following relationship3 with other users. This entails that each network
user may exhibit multiple links to other users, where each connection represents
a different relationship type. In this context, a social media network is defined
as a multidimensional network [9, 4], so as to better reflect the impact each
relationship type has on the overall structure.

This work aims at detecting the most influential user accounts in a social me-
dia network which is formed by considering multiple relationship types among
its users, and focuses on the particular case of terrorism-related social media
networks. In particular, the main contribution of this paper is the development
of a novel framework for the identification of (terrorism-related) key actors in
multidimensional social networks that have the ability to represent multiple rela-
tionship types between network nodes. The key actor identification is performed
based on centrality measures for detecting the social network members who play
a central role for the diffusion of information. For estimating the centrality mea-
sures, the original multidimensional network is mapped to a number of different
simple (single-layer) weighted networks, each representing the original (multidi-
mensional) network through a different weighting scheme.

The evaluation of our framework is performed on a social media network
formed by Twitter accounts based on three different types of user relationships:
(i) retweets, (ii) replies, and (iii) mentions. The accounts and their relation-
ships have been extracted from a dataset collected from Twitter using terrorism-
related Arabic keywords provided by LEAs and domain experts. We assessed the
effectiveness of the proposed framework for each centrality measure by using as
ground truth the suspension of the retrieved accounts by Twitter.

The remainder of the paper is structured as follows. Section 2 discusses re-
lated work. Section 3 presents the proposed multidimensional key actor detection
framework. Section 4 presents the evaluation experiments and their results. Fi-
nally, Section 5 concludes this work.

1 A mention represents a simple reference to a user within a tweet.
2 A retweet is a re-post of a tweet.
3 Twitter followers are users who follow or subscribe to another user’s tweets. A user’s
following list contains all the users they follow on Twitter, whereas their followers
list contains the users who follow them.
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2 Related work

Several research efforts have been conducted over the past few years for detect-
ing the most influential actors of multidimensional social networks. One of the
early attempts identified influential users in a Twitter-based multidimensional
network composed by following, retweeting, and mentioning interactions based
on three link analysis algorithms [13]. In another research effort, the influence of
the Twitter users was measured based on random walks in a multidimensional
network taking into account several relationship markers [18]. Furthermore, a
work on a Twitter-based social network detected the most influential candidates
of the European Elections 2014 based on belief functions theory after combining
different interaction types [2].

Moreover, various efforts have focused on identifying key actors in terrorism-
related social networks. A survey on social network analysis in counter-terrorism
provided a comparison of tools which perform key actor identification on single-
layer networks based on centrality measures [8]. Additionally, a work on key
actor identification in terrorism-related social networks resulted in the develop-
ment of an entropy-based centrality measure, namely Mapping Entropy Between-
ness, which has shown good performance when compared with well-established
centrality measures [12]. Finally, another research effort focused on uncovering
key communities, i.e., social media users belonging to the same community as
key actors of interest [11]. Contrary to the aforementioned research efforts, this
work focuses on identifying (terrorism-related) key actors in multidimensional
networks after taking into account several different types of user interactions.

3 Multidimensional key actor detection framework

This work employs centrality measures so as to identify the key actors in a multi-
dimensional [9, 4] terrorism-related social network. Our framework is illustrated
in Figure 1, where a keyword-based search on a social media platform provides
a dataset of social media posts and users. Next, a weighted multidimensional
network of users is created by exploiting several relationship types derived from
either user-to-user or user-to-post interactions; in the latter case, a user-to-post
interaction is transformed into a user-to-user relationship based on the owner
of the respective post. In the resulting network, each user is represented by a
node, while an edge (ni, nj , dk, wijk) is created between two users ni, nj for a
given relationship type (dimension) dk, if one or more interactions of the rela-
tionship type dk has been captured within the dataset, and wijk reflects the edge
weight. Then, the multidimensional network is mapped to a weighted single-layer
network based on one of the proposed mapping functions. Finally, a centrality
measure is applied on the derived simple network and the key actors are ranked
in descending order of their respective centrality score.

In the following, we first describe the mapping of the multidimensional net-
work to a weighted single-layer network (Section 3.1) and then present the cen-
trality measures employed in our framework (Section 3.2).
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Fig. 1. Multidimensional key actor detection framework

3.1 Multidimensional to single-layer network mapping

Given that our framework considers multidimensional social media networks,
we use weighted edge-labeled multigraphs for modeling their properties. Let
G = (N,E,D) denote a weighted edge-labeled undirected multigraph [4], where
the set of nodes N represents the network actors, the set of labels D reflects the
dimensions (i.e., relationship types) considered, and the set of edges E represents
the links between the actors. This multigraph can then be represented by a set
of quadruples (ni, nj , dk, wijk) where ni, nj ∈ N are the edge nodes, wijk is the
weight of the relationship (e.g., reflecting its strength) between these two nodes,
and dk ∈ D is the edge label. A node appears in a given relationship type dk, if
it is part of at least one edge labeled with dk adjacent to it, and an edge belongs
to a given relationship type dk, if its label is dk. It is assumed that for any given
pair of nodes ni, nj ∈ N and a label dk ∈ D, there may exist only one edge.

Given that the centrality measures employed in our framework require single-
layer networks for their computation, we propose a set of five mapping func-
tions for transforming the weighted edge-labeled multigraph into a weighted
single-layer graph. The goal of the mapping functions is to consider the multi-
graph structure for producing weighted single-layer equivalents capable of rep-
resenting the original information captured in the multidimensional structure.
The five mapping functions are applied on a weighted edge-labeled multigraph
G = (N,E,D), where the weighted adjacency matrix w is projected to a 3-
dimensional space (i.e., wijk represents the weight of the edge between nodes
ni and nj for relationship type dk), and produce a weighted undirected network
G′ = (N ′, E′), where N ′ = N (i.e., the multigraph and the derived single-layer
network contain the same nodes) and w′ represents an adjacency matrix of the
weighted graph (i.e., w′

ij is the weight of the edge between nodes n′i and n′j).
The original multigraph is formed based on two different weighing schemes:

(i) WS1 considers that wijk = 1 if node ni has interacted at least once with node
nj for a given relationship type dk, whereas (ii) WS2 considers that wijk is equal
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to the number of interactions between nodes ni and nj for each relationship type
(e.g., if ni has interacted 10 times with nj for a given relationship type dk, then
wijk = 10). The proposed mapping functions are listed below:

Mapping function M1 (Merged network): This mapping is applied on
a weighted multigraph formed using WS1 and produces a single-layer network
where n′i is linked to n′j with w′

ij = 1, if there exists at least one edge wijk = 1
between ni and nj in the original multigraph, regardless of relationship type dk.

Mapping function M2 (Weighted network using relationship type):
M2 also requires a multigraph formed using WS1. It considers the number of the
different dimensions for each edge between ni and nj , and produces a weighted
single-layer network where n′i is linked to n′j with a weight w′

ij = wij1 + wij2 +
... + wijm (i.e., equal to the sum of the edge weights for all the relationship
types between ni and nj , where an existing relationship type for a given edge
has wijk = 1 ). This entails that w′

ij is equal to the number of the existing
relationship types for each pair (ni, nj) of the multigraph and cannot be greater
than the actual number of the relationship types supported by the multigraph.

Mapping function M3 (Weighted network using relationship type
occurrence): M3 is applied on a weighted multigraph following WS2. It con-
siders the weight wijk of each dimension dk for each edge between ni and nj and
generates a single-layer weighted network where n′i is linked to n′j with a weight
w′

ij = wij1 + wij2 + ...+ wijm (i.e., equal to the sum of the edge weights for all
the relationship types between ni and nj , where an existing relationship type
for a given edge has wijk >= 1). The main difference between M3 and M2 lies
in the weighting scheme used on the multigraph, which affects the edge weights
in the derived single-layer network.

Mapping function M4 (Weighted network using relationship type
importance): This mapping first estimates the importance of each dimension
dk in the multigraph based on two different approaches: (i) the importance of
a relationship type, imk (with 0 ≤ imk ≤ 1), is a fraction of its total weight
among all the multigraph edges when compared with the total weight of all
the multigraph edges for all the relationship types; i.e., for each relationship
type, it takes into account the number of interactions between any given pair of
nodes, based on the assumption that the occurrence frequency of a relationship
type within the multigraph entails a stronger link between the respective nodes,
and (ii) the importance of a relationship type imk is the inverse fraction of the
former approach, meaning that the most significant relationship type is the one
exhibiting the less frequent occurrence within the multigraph edges, based on
the assumption that the occurrence frequency of a relationship type is inversely
proportional to the relationship strength. M4 requires a weighted multigraph
formed using WS1 and generates a single-layer weighted network where n′i is
linked to n′j with a weight w′

ij = im1×wij1+im2×wij2+ ...+imk×wijm, where
an existing relationship type for a given edge on the multigraph has wijk = 1.

Mapping function M5 (Weighted network using relationship type
importance and occurrence): This mapping function exploits the importance
of each relationship type based on the two approaches presented in M4. M5 is
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applied on a multigraph created with WS2 and generates a single-layer weighted
network where n′i is linked to n′j with a weight w′

ij = im1 ×wij1 + im2 ×wij2 +
... + imk × wijm, with an existing relationship type for a given edge on the
multigraph having wijk >= 1. M5 and M4 are conceptually similar, however,
their difference lies in the weighting scheme used on the input multigraph.

3.2 Centrality-based key actors

This section describes the seven state-of-the-art centrality measures employed for
the key actor identification; for the latter two, it also expands their definitions,
so that they can be applied on weighted single-layer networks.

The degree of a node is equal to the number of its adjacent nodes, i.e., the
number of nodes that a node is linked to [10]. In weighted networks, the degree
has been extended so as to reflect the sum of the weights of the adjacent nodes
and has been defined as node strength [16]. Given a weighted undirected network
G = (N,E) where N is the set of nodes and E is the set of edges, the strength
of a node ni ∈ N , strength(ni), is the sum of the weights of its adjacent edges:

strength(ni) =

N∑
j

wij (1)

where w is a weighted adjacency matrix in which wij > 0, if ni is connected
to nj , and the value reflects the weight of the edge. In a weighted undirected
network, the Degree Centrality (DC) of a node equals to its strength.

Besides Degree Centrality which simply sums the weights of adjacent edges
and is not affected by the position of a node in the network, our framework also
employs Betweenness Centrality which quantifies the number of times a node
acts as a bridge along the shortest path between two other nodes [10]. We define
a path from ni ∈ N to nj ∈ N as a sequence of nodes and edges which begins by
ni and ends in nj , such that each edge connects its preceding with its succeeding
node. In a weighted undirected network, the path length is defined as the sum of
the weights of all its edges, and the shortest path is the path with the minimum
length connecting ni and nj . In this context, the Betweenness Centrality
(BC) of a node nk is based on the number of shortest paths from node ni to
node nj that pass through node nk, divided by the number of all shortest paths
from node ni to node nj [6]:

BCk =
∑

ni 6=nj 6=nk∈N

σninj
(nk)

σninj

(2)

where σninj
is total number of shortest paths from node ni to node nj and

σninj
(nk) is the number of those paths that pass through nk.

Our framework also employs Closeness Centrality (CC) which is based
on the inverse of the average distance to all other nodes of a network [10], the
Eigenvector Centrality (EC) which considers that a node is more influential if
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it is connected to many nodes who themselves have high scores and corresponds
to the largest eigenvalue of the adjacency matrix [5], and PageRank (PR)
which (motivated by estimating the importance of Web pages in the Web graph)
corresponds to the principal eigenvector of the normalized adjacency matrix [7].

Furthermore, our framework employs two entropy-based centrality measures,
Mapping Entropy (ME) [15] and Mapping Entropy Betweenness (MEB)
[12], which take into account the neighborhood N (nk) of a node nk for identify-
ing the key actors. ME and MEB consider the information that is communicated
through nodes which act, respectively, as a hubs or bridges, i.e. those with high
values of Degree or Betweenness Centrality between any two members, respec-
tively. We expand the definitions of ME and MEB which have been originally
applied in unweighted networks [15, 12], so as to also consider their computation
in weighted networks. To this end, the weighted ME and MEB definitions take
advantage of the Equations (1) and (2), so as to rely on the weighted computa-
tion of the Degree and the Betweenness Centrality, respectively:

MEk = −DCk

∑
ni∈N (nk)

logDCi (3)

MEBk = −BCk

∑
ni∈N (nk)

logBCi (4)

The evaluation of the different mapping functions and corresponding networks
is performed by comparing the effectiveness of the centrality measures under
consideration: Degree Centrality (DC), Betweenness Centrality (BC), Closeness
Centrality (CC), Eigenvector Centrality (EC), PageRank (PR), Mapping En-
tropy (ME), and Mapping Entropy Betweenness (MEB), as discussed next.

4 Evaluation Experiments

This section first describes and analyses the dataset used in our experimental
evaluation (Section 4.1) and then presents the evaluation setup and discusses
the experimental results (Section 4.2).

4.1 Dataset

Our experiments were performed on a social media network formed by data
collected from Twitter within a 16-month period (February 9, 2017 to June 8,
2018) using a set of Arabic keywords related to terrorism, provided by LEAs and
domain experts. The dataset consists of 65,511 tweets posted by 35,718 users.

Three user interaction types were examined: retweets, replies and mentions.
Moreover, two variations of a weighted multidimensional social network were de-
veloped based on the two weighting schemes of our framework, respectively, (i) a
multigraph using WS1 which consists of 33,946 retweets, 4,411 replies, and 8,062
mentions, while the total weight per relationship type is equal to the number of
edges (given that all the edge weights are equal to 1), and (ii) a multigraph using
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WS2 which contains the exact same number of edges per relationship type as
above, while the total weight of retweets, replies and mentions is 57,541, 9,926,
and 16,546, respectively (i.e., each edge is assigned a weight based on the number
of interactions per relationship type for any given pair of nodes).

Next, seven weighted single-layer networks (having 35,718 nodes each) were
produced after applying the proposed five mapping functions and their variations
(see Section 3.1). For M4 and M5, the importance rate for retweets, mentions,
and replies was estimated as 0.68, 0.20, and 0.12, respectively, whereas the inverse
important rate was estimated as 1.47, 5.00, and 8.33, respectively.

In addition, three single-layer networks were also created (one for each re-
lationship type), so as to be used as a baseline for our evaluation. To examine
the behavior of the three baseline single-layer networks, we simulated targeted
attacks on the Largest Connected Component (LCC, i.e., the largest subgraph
in which any two nodes are connected to each other by paths) of each network,
by sequentially removing its most central node(s) based on each of the centrality
measures under consideration with the goal to determine which dissolves the
network structure faster and affects its robustness.

Before initiating the attacks to the three baseline networks, we examined
their scale-free property, so as to gauge their vulnerability to targeted attacks
towards their central nodes. To this end, we examined the power-law behavior of
the degree distribution for the networks under consideration, so as to identify the
vulnerability of the LCC to targeted attacks. For the retweet-based single-layer
network, the power-law exponent is estimated to be 3.288 and is statistically
significant, as stated by the Kolmogorov-Smirnov hypothesis test with p-value
0.644 > 0.05, which confirms the scale-free character of the network, therefore
allowing for performing targeted attacks on the most central nodes. Similarly,
the reply-based network is also scale-free, with Kolmogorov-Smirnov’s test p-
value 0.851 > 0.05 and a power-law exponent estimated to be 2.606. Finally,
the mention-based network also complies with the scale-free assumption. The
power-law exponent is estimated to be 3.0951 and is statistically significant, as
confirmed by the Kolmogorov-Smirnov hypothesis test with p-value 0.524 > 0.05.

For the retweet-based network, the LCC contains 15,577 nodes and 23,105
edges; for the reply-based network, 3,221 nodes and 3,773 edges; and for the
mention-based network, 3,953 nodes and 5,078 edges. Figures 2, 3, and 4 illus-
trate the decay of the LCC on the three networks under consideration. Between-
ness Centrality achieves faster removal of the LCC nodes for all networks, while
Closeness Centrality and MEB are in the second and third place, respectively.
The decomposition of the reply-based network is performed relatively faster when
compared with the other two networks, after taking into account both the orig-
inal size of the LCC and the number of the attacks required until the network
is decomposed; 52 nodes on average are removed at each iteration of the attack
process on the reply-based network for the best performing centrality measure,
whereas 39.53 and 22.77 nodes are removed on average on the mention-based
and the retweet-based network, respectively. This entails that the Betweenness
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Fig. 2. Decay of the largest component for the retweet-based network

Fig. 3. Decay of the largest component
for the reply-based network

Fig. 4. Decay of the largest component
for the mention-based network

Centrality is capable of identifying highly central nodes at earlier stages of the
attack process when exploiting the reply-based interactions.

4.2 Evaluation results

The evaluation of our framework is performed by comparing the seven centrality
measures under consideration for the different generated networks, i.e., the three
baseline relationship-based networks and the seven weighted networks produced
through the mapping functions. In our experiments, we extract the top 100 key
actors returned by the employed centrality measures and evaluate them against
ground-truth which we consider to correspond to the suspension of a Twitter
account. Given that the suspension process is applied when an account violates
Twitter rules by exhibiting abusive behavior, including posting content related
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Table 1. Evaluating the results of centrality measures with P@100

Network Centrality measure

DC BC CC EC PR ME MEB

Retweets 0.56 0.55 0.35 0.79 0.06 0.21 0.21
Replies 0.10 0.10 0.09 0.08 0.58 0.66 0.65
Mentions 0.07 0.06 0.10 0.08 0.04 0.05 0.24

M1 0.42 0.41 0.25 0.61 0.03 0.21 0.21
M2 0.07 0.08 0.09 0.11 0.04 0.03 0.21
M3 0.09 0.08 0.09 0.81 0.07 0.03 0.07
M4a 0.03 0.05 0.19 0.08 0.08 0.05 0.00
M4b 0.19 0.08 0.05 0.37 0.09 0.03 0.00
M5a 0.14 0.07 0.28 0.17 0.11 0.04 0.00
M5b 0.19 0.08 0.06 0.17 0.04 0.03 0.00

Table 2. Evaluating the results of centrality measures with MRR

Network Centrality measure

DC BC CC EC PR ME MEB

Retweets 0.50 0.50 1.00 1.00 0.03 0.02 0.02
Replies 0.05 0.05 0.06 0.20 0.20 1.00 1.00
Mentions 0.03 0.03 0.14 1.00 0.04 0.10 0.05

M1 1.00 1.00 1.00 1.00 0.13 0.02 0.02
M2 0.03 0.03 0.50 0.05 0.11 0.02 0.02
M3 0.14 0.03 1.00 1.00 0.06 0.03 1.00
M4a 0.02 0.10 0.33 0.33 1.00 0.03 0.00
M4b 1.00 0.09 0.07 0.10 1.00 0.02 0.00
M5a 0.06 0.25 1.00 0.11 0.20 0.04 0.00
M5b 1.00 0.25 0.02 0.11 0.10 0.03 0.00

Table 3. Evaluating the results of centrality measures with MAP@100

Network Centrality measure

DC BC CC EC PR ME MEB

Retweets 0.44 0.43 0.46 0.73 0.05 0.14 0.14
Replies 0.07 0.07 0.08 0.10 0.51 0.66 0.64
Mentions 0.06 0.05 0.13 0.21 0.04 0.08 0.24

M1 0.35 0.34 0.41 0.60 0.07 0.15 0.15
M2 0.06 0.07 0.19 0.10 0.06 0.03 0.14
M3 0.13 0.06 0.30 0.92 0.06 0.03 0.21
M4a 0.03 0.13 0.17 0.11 0.18 0.05 -
M4b 0.32 0.09 0.05 0.23 0.26 0.03 -
M5a 0.12 0.19 0.34 0.18 0.12 0.04 -
M5b 0.26 0.15 0.05 0.19 0.16 0.04 -

to violent threats and hate speech, we consider that the suspended accounts in
our dataset are likely to have exhibited such behavior. We assess the performance
of the centrality measures based both on set-based and rank-based metrics. In
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particular, Precision at k (P@k) is employed as a set-based metric, whereas
the Mean Reciprocal Rank (MRR) and the Mean Average Precision at
k (MAP@k) are used for evaluating the ranking of the returned accounts.

Tables 1, 2 and 3 depict the performance of the centrality measures according
to P@100, MRR, MAP@100, respectively. In terms of P@100, the retweet-based
network achieves better results in identifying suspended Twitter accounts within
the top 100 key actors detected by DC, BC, CC, and EC, whereas the reply-based
network exhibits better performance for PR, ME, and MEB. Similar behavior is
observed when taking into account MAP@100. This indicates that relying on the
retweet and the reply-based interactions helps uncover a large number of suspi-
cious accounts. On the other hand, these two baseline networks fail to include all
the potential information derived after aggregating several different relationship
types. With regards to the weighted networks derived by the proposed mapping
functions, M1 exhibits the best performance for P@100 and MAP@100 for al-
most all centrality measures, however, M3 is the best performing network overall
when combined with EC. On the other hand, given that MRR is a rank-based
metric, a centrality measure that detected less key actors may have a larger
MRR value, if a suspended account is encountered in the first positions within
the top 100 key actors. In terms of MRR, M1 is the top performing network,
given that it manages to uncover a suspended account on the top key actor po-
sition for DC, BC, CC, and EC. The remaining mapping functions also manage
to identify the first suspended account within their top 10 key actors for several
centrality measures.

When examining the centrality measures of our framework, EC is the top per-
forming metric which provides better results in terms of P@100 and MAP@100
for retweets, M1, and M3. CC and EC follow, whereas ME and MEB exhibit
good performance for the reply-based network. In terms of MRR, we observe a
similar pattern. EC and CC are the top performing centrality measures followed
by DC and PR. In general, 12 combinations of mapping functions and centrality
measures in total identify a suspended account at the top key actor position.

5 Conclusions

This work addressed the key actor identification task in a terrorism-related mul-
tidimensional social media network. The proposed framework employs a set of
mapping functions for transforming the original multidimensional network to an
equivalent weighted single-layer network, and then it applies a centrality mea-
sure for detecting the key actors on the derived network. The evaluation of our
framework shows its potential to assist towards the discovery of key actors based
on a number of different user interactions.
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