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Abstract. In the recent years, the advancement of technology, the constantly aging population and the 

developments in medicine have resulted in the creation of numerous ambient assisted living systems. Most 

of these systems consist of a variety of sensors that provide information about the health condition of 

patients, their activities and also create alerts in case of harmful events. Successfully combining and 

utilizing all the multimodal information is an important research topic. The current paper compares 

model-based and class-based fusion, in order to recognize activities by combining data from multiple 

sensors or sensors of different body placements. 
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1 Introduction 

Population of elderly people is constantly rising and will continue to increase significantly according to 
expectations. Although this creates a lot of problems in the health care, including higher costs and larger 
number of people with difficulties in self-serving, the advancement in technology is able to provide solutions 
[1]. Systems that employ artificial intelligence applications, have the ability to recognize the daily activities of 
a subject, provide information about heart rates, blood pressure or temperature and detect the occurrence of 
a harmful event, such as fall. 

Assisted living systems utilize a variety of sensors, devices and technologies. Inertial sensors are usually 
included in such systems, however they can also be used separately to provide information about the 
activities performed by a person. Nowadays, such sensors can be easily found in mobile and wearable devices. 
Most commonly used sensors are accelerometers, gyroscopes and magnetometers. Accelerometers, which are 
the most popular, are quite effective in recognizing activities with repetitive body movement [2] while 
gyroscopes are capable of recognizing the orientation of an object [3]. Accelerometers and gyroscopes can be 
used separately and produce adequate results, while magnetometers are known to perform poorly when used 
individually [4]. Inertial sensors in general, are very prone to environmental noise, thus combining them 
tends to increase the accuracy of the recognition rate. Combination of sensors is algorithmically achieved 
through combination of the features extracted from each sensor, referred to as early fusion, or combination of 
the classification results of each individual sensor, also known as late fusion. It is easily understood that late 
fusion can be also applied to an individual sensor, combining the results of different classification algorithms 
and improve its performance. 

In human activity recognition problems, fusion can also be applied to combine the results of the same 
sensor placed on different body parts, since there is claim that the placement of accelerometer affects its 
performance [5]. Although it is not considered mistaken to ignore the location of the sensor when analyzing 
its recordings, there are studies that investigate the affect the body placement has on the recognition of 
activities. In [5], the authors propose a late fusion methodology that combines accelerometers placed on 
ankle, wrist and chest. Authors in [4] investigate how five different body locations of a smartphone affect the 
performance of its built-in sensors in recognizing particular activities. Performance of individual sensors and 
their combination by concatenating feature vectors is also studied. [6] and [7] combine accelerometers of 
different body placements by applying early fusion. 

In the current study, late fusion is employed to combine three inertial sensors, namely accelerometer, 
gyroscope and magnetometer, by body placement. Furthermore, the fusion of different placements of the 
same sensor is investigated. For the late fusion, two weighting schemes are incorporated and compared with 



 

a baseline late fusion method. The first one is a model-based method, the weighted accuracy [1], which 
reflects the total performance of a classifier. The second scheme is a class-based method, recently proposed 
by the current authors in [16], that utilizes the detection rate of a class, so as to emphasize the ability of a 
classifier in detecting certain classes and not its overall performance. In the latter, we suggested using fusion 
weights that are equal to the supplement of the class detection rate. We incorporated the suggested weights 
in a typical late fusion function and in a framework with posterior adapted class probabilities. The suggested 
method was compared with known late fusion methods, like averaging and stacking and with a novel 
framework suggested in [5]. Finally, we compare the model and class based fusion schemes with a simple 
form of late fusion, the averaging of class probability vectors produced by different models. 

The rest of the paper is organized as follows: Section 2 includes a brief mention of related work. Section 3 
explains the theory used and Section 4 presents the results of the application. Section 5 concludes the paper. 

2 Related work 

Although fusion has recently started gaining popularity, there is already a wide variety of available research 
work. As already stated, fusion can be applied to combine different sensors, even quite hetereogenous ones, 
sensors placed on different locations or improve the performance of an individual sensor by combining 
results of several algorithms. A methodology for recognizing activities from wearable sensors is proposed in 
[8]. The methodology is based on the late fusion of classification results obtained from Neural Networks (NN) 
and Hidden Markov Models (HMM) using two sensors placed on different body locations of the participants. 
In [9] a wireless sensor network is developed to observe the status of persons in need of assistance. 
Accelerometer data are combined with images from three different cameras to detect falls and improve the 
system’s ability to create true alerts. In [10] data from a wearable inertial sensor and two cameras are 
combined in order to detect events. For the fusion step a probabilistic scheme is proposed by the authors. 
Many studies use audio visual sensors to recognize activities, although this process is usually more time 
consuming and the equipment needed requires bigger budgets. As already mentioned, input from wearable 
sensors is often combined with video images, especially in platforms that provide support at home for people 
with disabilities. In [11] the authors implement three types of fusion, early, intermediate and late, to analyze 
input from wearable cameras and recognize activities. HMM algorithm is incorporated in the process to 
classify the data. Different forms of fusion allow for the combination of multiple modalities in different levels. 
In [13] accelerometer and video data are combined in different stages of the classification process. The 
authors combine the different inputs before the feature extraction step, after feature extraction by 
concatenating the different vectors and at results’ level by combining the algorithm outputs. 

In [4] the authors explored the individual performance of each one of the three smartphone sensors, 
accelerometer, gyroscope and magnetometer, the combination of two of them, and the affect of the location of 
the sensor in the recognition process. For the combination of sensors or placements, the authors use the 
simplest form of early fusion, the concatenation. The current paper, on the contrary, uses late fusion to 
combine three sensors rather than two. In [12], the authors use built-in sensors of smart devices, separately 
and combined, and apply several well known classifiers to recognize activities. With the assistance of GPS and 
light sensors the activities can be further categorized to indoor or outdoor. Accelerometer, gyroscope and 
magnetometer data are combined with light and pressure data, and after being interpolated and filtered, 
features are extracted and combined with GPS information in order to enter a classification algorithm. The 
authors don’t apply any fusion techniques, they focus however on the preprocessing of the data so as to 
eliminate noise and hetereogenity. Accelerometers and gyroscopes are most often combined in fusion 
schemes, probably due to their satisfactory performance in the daily activities recognition. Early and late 
fusion is applied in [17] to combine accelerometer and gyroscope features. The authors use concatenation for 
early fusion, a weighted scheme for late fusion and a descriptor-based framework for the activity recognition. 
Authors in [18] fuse accelerometer and gyroscopes to recognize activities and detect falls and focus on the 
importance of the window size for signal segmentation. 



 

Weights are quite often utilized in fusion schemes, especially in late fusion ones. Out of bag errors 
acquired from the random forest algorithm are used in order to combine classifier results of different 
modalities in [14]. The classification problem is not relevant to the activity recognition, the methodology 
though could be easily implemented on multisensor data. In [1] the authors make use of a multisensor 
platform and apply several fusion weights combined with different fusion functions in order to recognize 
activities. The authors also propose a genetic algorithm to calculate weights. The weighted accuracy included 
in the latter, is also utilized in the current paper. 

3 Methodology 

The current human activity recognition framework comprises of the following steps: 

1. Sliding window segments 

2. Feature extraction 

3. Classification algorithm 

4. Model-based or class-based fusion 

Sliding windows of 2 seconds without overlap were taken in order to extract features, similar to [5]. Time 
domain features, mentioned in Table 1, were extracted from the sliding windows without any further filtering 
or preprocessing of the data. The initial dataset was then segmented in the required subsets, responding to 
the sensor and body placement we wanted to analyze. Several multilabel classification algorithms were tested 
and the four that achieved better results are included here: Support Vector Machines (SVM), Random Forests 
(RF), C5 trees and k-Nearest Neighbors (kNN). Each classifier was applied separately to a sensor and the 
classification results of the algorithms were combined afterwards. For the fusion step, two types of fusion 
were tested. Model-based, which characterizes the overall performance of the classifier and class-based 
which pays attention to the recognition of specific classes. The results were compared with those of the 
simple late fusion method of averaging class probabilities. To derive both types of weights for the fusion step, 
the typical steps of a classification framework were applied. An algorithm was trained on the trainset and 
then applied to the testset in order to predict the types of activities. The fusion schemes applied, combine 
sensors according to the following two scenarios: 

1. Different sensors with the same placement 

2. Identical sensors of different placement 

Model-based fusion For the model-based approach the weighted accuracy was used. The accuracy (Eq. 2) of 
a classifier applied to a sensor, divided by the sum of accuracies, was multiplied by the class probability 
vectors (Eq. 1) and the products of all three sensors were finally added together to create a final class 
probability vector [1]. The class with the maximum probability was assigned to each test case. This method 
gives advantage to the model that has the best performance overall. The formula for weighted accuracy, as 
described in [1] is given in Eq. 3 and is calculated for each one of the i models: 

  (1) 

 

Table 1. Extracted Features 

Features 
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Mean 

Median 

Minimum 

Standard Deviation 

Variance 



 

 

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (2) 

  (3) 

Class-based fusion For the class-based fusion, a novel method proposed by the authors of the current paper 
in [16] is applied. Class-based methods pay attention to the recognition of each class, which is usually 
characterized by F1score [5] or balanced accuracy. This method multiplies the class probabilities with the 
supplement of the detection rate, which was chosen as weight, to assist the recognition of classes not so easily 
predicted. This is performed for each sensor separately and the weighted probability vectors of all sensors 
are afterwards summed together. Again, to assign a class to a test case, we find the class with the maximum 
fused probability. The detection rate is defined in Eq. 4. 

 DR = TP/(TP + TN + FP + FN) (4) 

The weights are calculated for each class j by calculating the supplement of the class detection rate (Eq. 5). 

 Wij = 1 − DRij (5) 

Both types of weights are then multiplied with the class probabilities of an algorithm (Eq. 6). In the model 
based fusion, the class probability vectors are multiplied by the same number, the WACC, while in the class-
based weight, each class probability vector is multiplied by a different weight. 

 Pw = WijPij (6) 

Averaging Each model of those that will be combined, produces k (j = 1,..,k) class probability vectors (Eq. 1). 
To combine the results, a probability vector is calculated for each class, by averaging the respective class 
probability vectors of the m models combined (Eq. 7). 

  (7) 

To evaluate the performance of the individual classifiers and the fusion results, we report two typical 
evaluation metrics. The accuracy of the model (Eq. 2) and the F1-score (Eq. 8). For multilabel classification, 
the F1-score is calculated for all classes and then averaged. The F1-score embodies both sensitivity and 
specificity and especially in multiclass problems, is considered more indicative of the accuracy metric, since it 
assesses the recognition of each class. In multiclass problems, high accuracy values may arise, while few of the 
classes may have not been recognized at all, a finding that is also confirmed in the current paper, as it can be 
seen in the following section. 

 F1 − score = 2 ∗ precision ∗ recall/(precision + recall) (8) 

4 Application 

In order to compare the model-based fusion method of weighted accuracy with the class-based fusion 
method, proposed by the authors in [16], and with the simple late fusion method of averaging and assess the 
influence of location on the sensors’ perfomances, we utilize the MHEALTH dataset [15]. The MHEALTH 
contains recordings of numerous sensors, some of which were placed at different parts of the subject’s body. 
The activities were performed by ten participants, nine of which have constituted the training set and the 



 

recordings of one participant constituted the test set. The subjects performed 13 daily activities, 8 of which 
are kept as a subset for the current application. The activities were ”Standing still”, ”Sitting and relaxing”, 
”Lying down”, ”Walking”, ”Climbing stairs”, ”Cycling”, ”Jogging” and ”Running”. The time domain features that 
are mentioned in Table 1 are extracted from a sliding window of 2 seconds without overlap, which in the 
current datasets responds to 100 recordings, since the sampling frequency is 50 Hz. 

Since it has been reported that body placement of a sensor affects its performance [5], we chose to 
combine a) results of accelerometers, gyroscopes and magnetometers of the same body location and b) 
accelerometers placed on three different locations, as well as gyroscopes placed at two different locations. 
More specifically, the results reported here for a) refer to the fusion of 

1. The three aforementioned sensors placed on the left ankle 

2. The three sensors placed on the right lower armand the results reported for b) refer to 

the fusion of 

1. Accelerometer placed on chest, with that placed on the left ankle and theone of the right lower arm 

2. Gyroscope placed on left ankle with the gyroscope of the right lower arm. 

The flowchart in Fig. 1 provides a graphic demonstration of the procedure. The flowchart describes the fusion 
of two sensors as an example, while three sensors are fused in the current application. The same procedure is 
repeated for the sensors on the right lower arm and for the fusion of identical sensors of different locations. 

Table 2 presents the evaluation metrics of the four classifiers applied on each sensor of the left ankle 
separately and of the three fusion methods, the weighted accuracy, which characterizes the performance of 
the algorithm, the detection rate based weighted fusion which evaluates the ability of an algorithm to detect 
each class and averaging. Table 3 contains the respective results for the sensors placed on the right lower 
arm. In most of the classifiers, fusion schemes exceed the best performing classifier on individual sensor data. 
In half of the cases the class-based fusion outperforms the model-based one. 

Table 2. Fusion of sensors placed on left ankle 

 SVM RF C5 KNN 

ACC F1 ACC F1 ACC F1 ACC F1 

Accelerometer 0.5750 0.5004 0.775 0.7670 0.5667 0.5649 0.7500 0.7489 

Gyroscope 0.7000 0.6900 1.0000 1.0000 0.9542 0.9537 0.8583 0.8167 

Magnetometer 0.3458 0.2724 0.825 0.8245 0.8208 0.8166 0.7708 0.7706 

WACC 0.7542 0.7311 0.9875 0.9874 0.9708 0.9706 0.8792 0.8486 

DR 0.7667 0.7474 0.9500 0.9500 0.8958 0.8834 0.8833 0.8535 

Averaging 0.7500 0.7272 0.9583 0.9585 0.9167 0.9112 0.8875 0.8638 
 

Table 3. Fusion of sensors placed on right lower arm 

 SVM RF C5 KNN 

ACC F1 ACC F1 ACC F1 ACC F1 

Accelerometer 0.6417 0.5582 0.8750 0.8333 0.8750 0.8333 0.9000 0.8845 

Gyroscope 0.5292 0.4200 0.8500 0.8085 0.8375 0.7978 0.7083 0.6823 

Magnetometer 0.3542 0.2940 0.6458 0.6257 0.6167 0.5979 0.5167 0.4812 

WACC 0.6583 0.5763 0.8750 0.8333 0.8958 0.8739 0.9542 0.9529 

DR 0.6875 0.6081 0.8750 0.8322 0.8875 0.8637 0.9208 0.9174 

Averaging 0.6875 0.6057 0.8750 0.8322 0.8833 0.8595 0.8833 0.8765 

 

SVM has the worst performance among all four classifiers at all cases. In general, although the accuracy 
and F1-score may indicate good performance, some classes were not recognized at all from certain sensors 
and classifiers. Three classifiers, namely SVM, RF and C5, applied on the accelerometer placed on the left 
ankle, failed to recognize one activity, ”sitting and relaxing”, while SVM was not able to predict at all two more 
activities: ”climbing stairs” and ”cycling”. 



 

 

Fig.1. Example flowchart of the weighted fusion of two sensors. 

SVM applied on gyroscope of the left ankle, does not again recognize ”cycling”, while kNN on gyroscope data 
does not predict ”standing still”. Three activities were not detected from the worst performing classifier, SVM, 
on magnetometer of the left ankle, namely ”lying down”, ”running” and ”jogging”. It is obvious that each 
sensor provides better recognition of some activities, therefore the fusion of all of them is expected to utilize 
all information in order to detect all performed activities. SVM, however, failed to detect ”cycling” on both 
fusion methods, which may be an indication that the sensors need to be placed elsewhere to better recognize 
that activity. 

The accelerometer of the right lower arm failed to recognize different activities than the accelerometer 
placed on the left ankle. More specifically, SVM, RF and C5 do not predict ”walking”, while SVM still does not 
recognize ”cycling’. ”Lying down” is the activity that gyroscope of the right lower arm cannot recognize with 
three tested classifiers: SVM, RF and C5. SVM does not detect ”walking” and ”cycling” also. SVM on 
magnetometer data does not detect ”lying”, ”jogging”, ”cycling” and ”running”. Two activities are not predicted 
from the model-based fusion method when using SVM, while RF, which in general performed very well in 
most cases, does not predict ”walking” from the class-based fusion. The results reveal that right lower arm 
may probably be a worst spot than left ankle to place those sensors. 



 

Following are the results of the four classifiers applied on each sensor separately for each location and the 
results of fusion of the same sensors of all placements. As it can be seen in Table 4, in most algorithms, the 
best results are obtained from the accelerometer when placed on the right lower arm. Fusion, whether model 
or class based, did not improve the recognition rate in all classification algorithms except SVM. 

Table 4. Fusion of accelerometers of different placements 

 SVM RF C5 KNN 

ACC F1 ACC F1 ACC F1 ACC F1 

Accel, chest 0.6458 0.5721 0.7792 0.7255 0.7208 0.6379 0.6208 0.5726 

Accel, left ankle 0.5750 0.5004 0.7750 0.7670 0.5667 0.5649 0.7500 0.7489 

Accel, right lower arm 0.6417 0.5582 0.8750 0.8333 0.8750 0.8333 0.9000 0.8845 

WACC 0.6833 0.6202 0.8042 0.7563 0.8375 0.7955 0.8708 0.8565 

DR 0.6833 0.6211 0.7792 0.7210 0.7458 0.6627 0.7667 0.7498 

Averaging 0.6750 0.6132 0.7792 0.7210 0.7458 0.6627 0.7667 0.7498 

 

Table 5 shows the results for gyroscope. Gyroscope seems to perform better when placed on the left ankle. 
Here, fusion of gyroscopes of different placements, improves the recognition rate compared to that of 
individual gyroscopes. 

In general, fusion of gyroscopes results in better recognition than the fusion of accelerometers, an 
indication that these activities are better detected by a gyroscope. However in some cases, there were still 
activities not detected at all, like ”lying”, that was not recognized by gyroscopes and three algorithms, kNN, RF 
and SVM when using class-based fusion. 

Table 5. Fusion of gyroscopes of different placements 

 SVM RF C5 KNN 

ACC F1 ACC F1 ACC F1 ACC F1 

Gyro, left ankle 0.7000 0.6900 1.0000 1.0000 0.9542 0.9537 0.8583 0.8167 

Gyro, right lower arm 0.5292 0.4200 0.8500 0.8085 0.8375 0.7978 0.7083 0.6823 

WACC 0.6417 0.5626 0.8750 0.8333 0.9958 0.9958 0.8708 0.8292 

DR 0.6375 0.5621 0.8750 0.8333 0.8708 0.8270 0.8042 0.7669 

Averaging 0.6458 0.5606 0.8750 0.8333 0.9958 0.9958 0.8667 0.8249 

 

5 Conclusion 

The fusion of the three sensors improved the recognition rate, whether the sensors were placed on the left 
ankle or the right lower arm. For half of the classification algorithms, class-based fusion outperformed the 
others. In almost all cases, model-based fusion and class-based fusion outperform the baseline method of 
averaging. Furthermore, for the current application, the left ankle placement achieves higher recognition 
rates than the right lower arm. 

Fusion of the same sensors placed on different body placements did not prove so promising for the 
prediction of the specific activities. The fusion of accelerometers of three placements, did not exceed the 
individual sensor’s performance in most cases, while for gyroscopes, model-based fusion with the weighted 
accuracy, improved the recognition rate for half of the algorithms applied. Fusion of magnetometers of 
different placements was not attended due to the poor performance of the sensor. 

Overall, for the particular implementation, combining different sensors of the same location proved better 
than combining same sensor placed on different locations. The class-based fusion scheme suggested in [16] 
performed equally well with the model-based fusion with the use of weighted accuracy. Both fusion schemes 
outperform fusion with averaging of class probabilities. The fact that for some tests there were classes not 
predicted, may have affected the performance of the class-based fusion. 



 

For future work, the authors will investigate fusion frameworks that combine different sensors and 
different placements, that will eliminate the heterogeneity caused by both factors. 
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