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Abstract: Flood is one of the most destructive natural phenomena that happens world-widely1

leading to damage of properties, infrastructures, or even loss of lives. The escalation in intensity2

and number of flooding events as a result of the combination of climate change and anthropogenic3

factors motivates the need to adopt real-time solutions for mapping flood hazards and risks. In4

this study, a methodological framework is proposed that enables the assessment of flood hazard5

and risk levels of severity dynamically by fusing optical remote sensing (Sentinel-1) and GIS-based6

data from the region of Trieste, Monfalcone and Muggia Municipalities. Explainable machine7

learning techniques were utilised, aiming to interpret the results for the assessment of flood hazard.8

The flood inventory was randomly divided into 70% were used for training and the remaining 30%9

were employed for testing. Various combinations of the models were evaluated for the assessment10

of flood hazard. The results revealed that the Random Forest model achieved the highest F1-score11

(approx. 0.99), among others and utilised for generating flood hazard maps. Furthermore, the12

estimation of the flood risk achieved by a combination of a rule-based approach to estimate the13

exposure and vulnerability with the dynamic assessment of flood hazard.14

Keywords: Flood Hazard; Flood Risk Maps; Flood Susceptibility; Satellite Imagery analysis; Crisis15

Maps; Machine Learning16

1. Introduction17

Over the past couple of decades, flood disasters are intensified, become more fre-18

quent and are more destructive compared with the old ones, especially in the developing19

countries, such as those in Latin America and the Caribbean [1], causing loss of human20

lives and properties worldwide. According to the CRED’s Emergency Events Database21

(EM-DAT 1), 44% of all disaster events from 2000 to 2019 concern flooding events, that22

have impacted on 1.6 billion people worldwide, which is the highest figure for any23

disaster type. Furthermore, floods are the most common type of event with an average24

of 163 events per year [2]. Climate changes along with anthropogenic factors play a25

significant role in escalating the severe impacts of flood disasters in terms of economic26

loss, social disruptions, and damage to the urban environment. Therefore, the proper27

monitoring to identify areas prone to floods and the effective mitigation countermeasures28

are considered very important to risk reduction [3–7].29

The deployment of real-time solutions for mapping flood hazard and the estimation30

of potential consequences of flood events might be extremely valuable towards con-31

1 https://www.emdat.be/
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fronting emergency response and mitigating the impact of those events [8]. Therefore,32

realising the need for effective flood management, the European Union adopted Euro-33

pean Directive 2007/60 / EC on flood risk assessment and management, which entered34

into force on 26 November 2007. In this Directive, the flood mapping was considered as35

a crucial element of flood risk management and moreover, it requested from EU Member36

States to prepare two types of crisis maps, namely the flood hazard and risk maps, by37

2013 (art 6) and update them every six years [9,10].38

Flood mapping is a process that describes the expected extent of Track changes is39

on 6 water inundation into dryland as a result of intense precipitation or river water40

level rise driven by natural or anthropogenic factors [11]. Although, flood mapping41

basically comprising of flood hazard maps and flood risk maps, however, it processes42

vary considerably from project to project, and/or country to country, depending on43

specific project requirements and country-specific guideline, legislation etc. [9,10,12,13].44

Flood mapping provides the baseline for a good understanding of historical flood trends,45

future expectations, and identification of vulnerable - susceptible locations likely to46

be impacted by flooding. Hence, the flood hazard and risk maps are considered as47

important tools to communicate flood risk to various target groups [12]. They convey the48

compiled information for flooding events to relevant public bodies like civil protection49

and water management authorities, municipalities and local states or disaster/crisis50

managers and control staffs, but also raise awareness to the broad public [14].51

Recently, the hazard, exposure and vulnerability from natural disasters have been52

assessed by utilising machine learning methods in a descriptive and/or predictive man-53

ner. Descriptive Machine Learning methods focus on the Response and Recovery phases54

of the Disaster Management Cycle while the Predictive Machine Learning methods55

concentrate to provide forecasting assessments of a natural disaster, enhancing the56

preparedness and mitigation processes of the Disaster Management Cycle [5,6,15,16].57

Specifically, flood hazard assessments employing descriptive machine learning58

methodologies focus primarily on the response phase, by estimating current inundation59

extents and depths. The aim is to provide assistance in various levels: to emergency60

responders and those affected directly, as well as to public and government authorities61

assessing the impact of the event. The increasing volume of obtained data due to62

the rise of Earth Observation technologies, such as Synthetic Aperture Radar - SAR63

(e.g. Sentinel 1) and optical data (e.g. Sentinel 2), as well as social media, provides64

opportunities for machine learning methods to improve efficiency of existing flood65

detection approaches [5,6,15,17,18]. Satellite remote sensing capabilities have been66

utilised to monitor for timely and near-real-time flood disaster detection. Specifically,67

SAR technology overcomes the limitations of the remotely sensed optical data which are68

not functional during cloud-cover or at night and as a result enhances total temporal69

resolution [6,7,15,17–19]. Advanced machine learning classification methods can be used70

to improve the process of the flood extend assessment and consequently the severity71

level of a flood hazard. However, the creation of these models requires the existence of72

annotated datasets to be used as training sets.73

As stated in [5] one of the main key research challenges in this domain is the lack74

of large scale annotation datasets, related to social media and satellite sensing data, for75

training and evaluation machine learning models enable to detect and analyse disasters76

generated by natural extreme events. Moreover, Said et al. [5] pointed out that another77

open issue in the application of Remote Sensing Disaster Management cycle concerns78

the Satellite Imagery low temporal frequency. On the other hand, time is vital during79

a disaster event in order to enable authorities to respond effectively to minimise the80

socio-economic, ecologic, and cultural impact of the event, to evacuate vulnerable people81

at risk, and general for recovery processes [20].82

Motivated by the above limitations, the main contribution in this work is the83

adoption of a methodological framework for the creation in near real-time of flood84

hazard and risk maps that is relied on the fusion of the satellite imagery outcomes85
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and the GIS-based data. Explainable Machine Learning techniques are employed to86

analyse and aggregate the information in a pixel-based approach aiming to estimate87

the flood hazard in terms of the severity levels, namely moderate, medium and high88

hazard. A thorough analysis of the specific local characteristics in pixel-based operation89

enhances the reliability of the proposed framework regarding the classification of these90

small areas in terms of their severity level. The annotation of the datasets which are91

needed for the modeling phase is carried out in an automated way, performing a rule92

that relies on the experts’ knowledge. Furthermore, relied on a rule-based approach, the93

assessment of the exposure, vulnerability as well as flood risk are carried out producing94

the corresponding crisis maps. Hence, the proposed framework enables authorities and95

other crisis managers to reliable map and monitor flooding events by generating crisis96

maps almost dynamically, which are strengthening situational awareness providing an97

adequate picture of the crisis.98

2. Relevant Literature99

Recently, numerous studies have been proposed to create flood susceptibility maps100

as a tool for efficient flood risk management [21–30]. Flood susceptibility indicates the101

propensity of an area, given by its physical-geographical characteristics, to be affected102

by flooding. Additionally, flood susceptibility mapping can be determined as a quan-103

titative and qualitative assessment of an area with likely flood occurrence, providing104

simultaneously the spatial distribution of the particular natural event [22,26]. Since105

the analysis and the mapping of flood susceptibility identify the most vulnerable areas106

and therefore can be considered as one of the most important aspects of early warning107

systems or strategies for prevention and mitigation of future flood situations [28,31]. It108

should be mentioned that apart from flood hazard, also the vulnerability and exposure109

can be visualised as maps, therefore, they are spatially explicit and are integrated into a110

GIS context. For instance, in a grid cell of GIS maps of a certain size, we can explicitly111

exhibit the expected depth of a flood and the presence of buildings and people and the112

likelihood of them to be damaged or harmed.113

With the rise of technological advances in Remote Sensing, Geographic Information114

System and Machine Learning, multidisciplinary approaches have been proposed aiming115

to efficiently map, monitor and manage floods. Hence, in the flood risk assessment,116

multiple satellite-based flood mapping and monitoring can be considered as an essential117

and imperative process. By leveraging the increasing availability of free-of-charge or118

low-cost satellite data with global coverage (e.g. Sentinel-1 and -2 from ESA, and Landsat119

and MODIS satellites from NASA) [32], new potentialities have emerged in the near120

real-time for mapping and modeling flood risk and its impact assessments [33]. As a121

result, authorities and stakeholders can be assisted to carry out appropriate disaster122

response and relief activities achieving in the early stages the disaster risk reduction and123

mitigation [34]. Another low-cost Remote Sensing solution that has gained considerable124

interest in the last decades is the Unmanned Aerial Vehicles (UAVs) [35,36]. Equipped125

by high-resolution camera sensors, UAVs can capture high-quality topographical data126

and facilitate monitoring and mapping a natural hazardous event [37].127

Advanced machine learning methods coupled with multi-criteria analysis methods128

and remote sensing technologies have been developed and applied effectively in flood129

susceptibility mapping. To name of a few, in [22] the performance of four machine-130

learning methods, namely Kernel Logistic Regression, Radial Basis Function Classifier,131

Multinomial Naïve Bayes, and Logistic Model Tree have been compared in terms of their132

efficiency to create reliable flash flood susceptibility maps. Similar, in [23] novel hybrid133

computational approaches of machine learning methods for flash flood susceptibility134

mapping, namely AdaBoostM1 based Credal Decision Tree, Bagging based Credal Deci-135

sion Tree, Dagging based Credal Decision Tree, MultiBoostAB based Credal Decision136

Tree, and single Credal Decision Tree have been compared for flash flood susceptibility137

assessment. In [24] authors focused on Support Vector Machines (SVMs) and applied138
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various kernels to investigate their capabilities to assess accurately the flood suscep-139

tibility and produce the corresponding mappings. Logistic Regression (LR) has been140

employed in [25] aiming to determine the significance of flood conditioning factors to141

flood susceptibility. Researchers in [21] adopted an approach to identify the areas sus-142

ceptible to flash-flooding, by relying on the computation of Flash-Flood Potential Index143

(FFPI) and using two machine learning models (k-Nearest Neighbor and K-Star) along144

with their novel ensemble with an Analytical Hierarchy Process (AHP). Furthermore,145

in [26] an approach to derive an integrated model, considering the best performing146

models among the combinations of four models: Artificial Neural Network (ANN), AHP,147

LR, and Frequency Ratio (FR) have been proposed. The goal was to develop a unique148

flood hazard map of Bangladesh by increasing the precision of flood susceptibility as-149

sessments. In [38] a hybrid model comprising Principal Component Analysis, LR and150

Frequency Distribution analyses has been presented, while in [39] an ensemble modeling151

approach which incorporates the SVM with Multivariate Discriminant Analysis (MDA),152

and Classification and Regression Trees (CART) to create a flood susceptibility maps153

has been proposed. Another ensemble method that combines SVM using a radial basis154

function kernel with the FR approach to estimate flood probability has recently pro-155

posed [40]. The ultimate goal was to assess the flood risk. In [41] two machine learning156

techniques, namely, Convolutional Neural Network (CNN) and SVM fused to develop157

most reliable flood susceptibility maps using GIS data. In [42] authors proposed a Deep158

Neural Network (DNN) model that employed Sentinel-1 satellite data by fusing the SAR159

backscatter coefficients and the Digital Elevation Model (DEM) data, so as to generate160

water-bodies masks.161

Generally, in the majority of the above studies, the satellite imagery and GIS related162

data are provided in near real-time in order to assess the risk of an extreme flood event163

which is in progress.164

3. Materials and Methods165

3.1. Study Area166

The study domain is located in North-East of Italy, and specifically in the eastern167

part of Friuli Venezia Giulia Region and of the Eastern Alps River Basin District, close168

to the boundary between Italy and Slovenia. In particular, this work focuses on three169

distinct areas, each of them located in a different Municipality, namely Trieste, Muggia170

and Monfalcone, as it is illustrated in Figure 1:171



5 of 30

Figure 1. Location of the case study areas (the square boxes). The coordinates are expressed in the
Reference system WGS84 - EPSG 4326

The area of Trieste and Muggia is unique in Italy from a hydrogeological perspec-172

tive, having karst features and thus lacking of surface hydrography and well-defined173

watersheds. As regards the topography, these two Municipalities are characterized by174

the presence of steep hillside close to the shoreline, as can be seen from the elevation175

plotted in Figure 2. However, the urban centers of the two municipalities, where this176

work focuses, have a low elevation, close to the sea level. As regards the Monfalcone177

region, the Municipality is mostly located in the plain called in Italian ‘Pianura Isontina’,178

at the mouth of the Isonzo River. The elevation of the area is very close, if not inferior, to179

the sea level and the terrain mostly plain with very low slope (Figure 2).180
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Figure 2. Elevation of the case study area in meters above sea level. Referred to vertical Datum
EPSG 32632 (WGS84/UTM Zone 32), while the horizontal coordinates are expressed in the
Geographic Reference System WGS84 - EPSG 4326 (Source of data INGV http://tinitaly.pi.ingv.it/,
elaborated by AAWA)

Due to the fact that the all the three study areas are characterized by low elevation181

of the ground above sea level, they are particularly prone to floods due to high tides182

of the Adriatic sea triggered by meteorological conditions. In fact, Flood hazard in the183

coastal area often manifests trough storm surge simultaneous to with specific climate184

conditions (rainfall, high tide, southern winds). Flooding in the urban areas of Trieste185

and Muggia is caused, in addition to the topography, by the excessive imperviousness186

of the soil and because of the difficult discharge of the superficial runoff when high tide187

is simultaneous to the flow of the superficial drainage network [43]. In addition, for the188

area of Muggia, even if the karst geology mostly causes the lack of superficial water189

bodies, there are two streams: Rosandra and Ospo. These two streams highlight some190

critical points from hydraulic point of view, due to the insufficient maintenance and to191

the increasing pluvial runoff caused by the intensive urbanization.192

Regarding Monfalcone area, the territory, located in the east side of the Isonzo River,193

is well known to be humid (swampland). In particular, drainage network often shows194

failures in occasion of flood events simultaneous with high tides. As it can be seen from195

Figure 2, part of the territory has also an elevation lower than the mean sea level. In196

addition, the area presents a relevant underground hydrography (e.g. the Karst river197

Timavo). Thus, in this area high tide can cause flooding due to the insufficiency of the198

marine levees, as well as for overflowing of the drainage network [43]. Finally, for the199

Monfalcone area, the flood risk is due also by the presence of the Isonzo River, one of200

the most important rivers for the Eastern Alps River Basin District, as well as its most201

relevant transboundary water body. The Isonzo River originates in Trenta’s valley with202

springs at an altitude of 935 m and flows into the Adriatic sea, near Monfalcone, where203

it forms a delta that tends, over time, to move from West to East. The Isonzo catchment204

basin subtends a total area of approximately 3400 km2 of which is about 1150 km2, that205

is about one third, in Italian territory. The Isonzo river, as character purely torrential,206

collects and discharges the waters of the southern side of the Alps Giulie, which separate207

http://tinitaly.pi.ingv.it/
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this basin from that of the Sava. The main right tributaries are the Coritenza, in Slovenian208

territory, and the Torre, which flows almost entirely in the Italian part. On the left, the209

Isonzo is fed by Idria and Vipacco, with their respective basins included totally and210

almost totally in Slovenian territory [44].211

3.1.1. Digital Elevation Model in the Study Area212

The Digital Elevation Model (DEM) has been provided by Eastern Alps River Basin213

District Authority (AAWA), who performed some GIS elaborations on the official DEM214

of the Friuli Venezia Giulia Region. DEM is provided into the reference system UTM 33N215

(EPSG 3045). It has been obtained using Laser Imaging, Detection And Ranging (LIDAR)216

technique from a set of areal flights which were performed in 2019. The raw data217

obtained from the flights (a cloud of points) has been gradually processed to provide the218

final product. This, in turn, consists of a representation of the points of terrain, devoid of219

all the elements above the ground (like buildings, vegetation, cables etc.), on a regular220

grid with pixel resolution of 0.5 m x 0.5 m, divided between many different tiles. The221

DEM has a planimetric accuracy of 0.15 m and an altimetric one which ranges from222

0.15 m (in open field) and 0.3 m (under vegetation cover), both estimated trough a set of223

reference points all over the region. It should be noted that for the city of Trieste, which224

is particular vulnerable to floods caused by the tide, identify flat areas near the sea is225

thus very important. We used three areas with DEM resolution equal to 0.5 m as shown226

in the above figure (Figure 2).227

3.2. Flood Conditioning Factors228

Floods are natural phenomena, caused by many different factors, including clima-229

tology, hydrology, geomorphology, topography and land use. For the purpose of this230

work, topography and land use are considered, extracting some of the most relevant231

conditioning factors from DEM analysis, well-known as Flood Conditioning Factors. The232

application of accurate Remote Sensing techniques is essential for obtaining reliable233

DEM and consequently more accurate factors. Furthermore, equivalent spatial resolution234

should be employed to calculate these factors. Below, a brief description of the factors235

that we utilised in this work is exhibited.236

Elevation: the elevation of the terrain has a great influence on floods. Firstly, at a237

great scale, the dynamic of the event is usually completely different in high elevation238

areas (mountains) than low elevation ones (i.e. plains) which usually are more vulnerable239

to flooding caused by various reasons such as river overtopping, drainage system failure240

and/or rising water level of seas, or other water bodies. Secondly, at a minor scale,241

the terrain elevation determines the presence of preferential pathways, which channels242

the superficial runoff, or accumulation areas, which usually are represented by local243

depression of the terrain.244

Slope is an essential factor for studying flash flood susceptibility because it affects245

the speed of water. Slope of a line can be positive, negative, nil, etc. [27].246

Aspect is related to the directions of water flow affecting flash flood occurrence.247

Flat areas are more vulnerable to water accumulation and/or spreading of water over248

a large surface, in particular when large volumes of water are involved. Therefore, by249

using this parameter, the flat regions can easily be identified [23,27].250

Topographic Wetness Index (TWI) is a topo-hydrological factor and reflects the251

wetness potential of each pixel. It can be calculated as a fraction of flow accumulation,252

As , and the slope α (in degree) at the pixel:253

TWI = ln
As

tan α
(1)

The increment of the TWI index, indicating higher wetness characteristics, means254

that high flow accumulation carries out in low slope surfaces, and, therefore, potentially255

indicates locations that are exposed at greater flood hazard [21,23–25,45].256
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Topographic Position Index (TPI) is a ratio of the pixel elevation (grid cell) and the257

mean elevation of its neighboring pixels (cells) respectively [21,45]:258

TPI =
Epixel

Esurrounding
(2)

Terrain Ruggedness Index (TRI) is in contrast to the TWI and is responsible for259

quantifying ruggedness of the terrain, by portraying the local variance of surface gra-260

dients or curvatures. TRI is considered as a morphometric measure that describes the261

heterogeneous condition of a land surface and facilitates characterizing it as smooth or262

rugged [27]. TRI which is defined as the mean difference between a central pixel and its263

surrounding cells can be calculated as follows [45]:264

TRI =
√
|x|(max2 − min2) (3)

where x shows the elevation of each neighbor cell to cell (0, 0)(m). In addition, min265

and max reflect the smallest and largest elevation value among nine neighbor pixels,266

respectively.267

Land Use Land Cover (LULC) is considered an efficient and important factor which268

be associated with flooding [24–26,28]. It can be concluded that under different LULC269

patterns the runoff conditions can be varied. Natural types of land cover differ in270

terms of infiltration capacity, while anthropogenic environments such as built-up areas,271

plantations, agricultural fields, or deforested areas also diverse. In vegetated areas,272

the runoff is minor due to the greater capacity of infiltration of the soil, which helps273

to mitigate the effect of a flood than in urban areas, where are typically composed of274

impermeable surfaces and increased surface runoff, and thus the infiltration rate is very275

low [24–26,28]. In this work, we employ the Corine Land Cover (CLC) map to estimate276

the Manning Roughness coefficient, as well as the presence of exposed assets for risk277

evaluation. CLC is a consistent classification system of long-term land cover data in278

Europe. The dataset gives detailed information about Land Cover for 44 classes, some of279

which are defined as mixed land cover and land use classes, with a thematic accuracy280

more than 85%.281

Water Velocity is another factor that along with water depth directly affects the282

flood occurrence. It is determined by combining the Water Depth (h), Slope (S), Manning283

Roughness (n) coefficient and pixel Resolution (L), based on the following formula:284

vi =
1
ni

√
Si

(
hiL

2hi + L

)2/3
(4)

where:285

vi denotes the Water Velocity (in m/s) at the i-th pixel;286

hi denotes the Water Depth (in m) at the i-th pixel;287

Si denotes the slope (in decimals) per pixel;288

L denotes the resolution (in m) of each pixel;289

ni denotes the Manning Roughness (Gauckler–Manning–Strickler) coefficient (in290

s/m1/3 ), that depends also on the land use and thus can be related by the Corine291

Land Cover index, indicating the surface roughness per pixel.292

3.3. Satellite Imagery Analysis293

For the flood detection we processed the Sentinel-1 GRD-IW products of the flooded294

day and the timeseries images using ESA’s Sentinel Application Platform2 (SNAP).295

Following preprocessing steps were applied [46]:296

2 https://step.esa.int/main/toolboxes/snap/

https://step.esa.int/main/toolboxes/snap/
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• Apply Orbit File: The operation of applying a precise orbit available in SNAP297

allows the automatic download and update of the orbit state vectors for each SAR298

scene in its product metadata, providing an accurate satellite position and velocity299

information.300

• Thermal Noise Removal: Reduces noise effects in the inter-sub-swath texture, in301

particular, normalizing the backscatter signal within the entire Sentinel-1 scene and302

resulting in reduced discontinuities between sub-swaths for scenes in multi-swath303

acquisition modes.304

• Subset: the initial product is cropped so it contains only the lake we want to observe.305

Some balance between the inundated and non-inundated areas is desired.306

• Radiometric calibration: Fixes the uncertainty in the radiometric resolution of307

satellite sensor. The pixel values can be directly related to the radar backscatter of the scene.308

The information required to apply the calibration equation is included within the309

Sentinel-1 GRD product.310

• Speckle noise removal: Removes the pepper and salt like pattern noise that is311

caused by the interference of electromagnetic waves. The “Lee Sigma” filter of Lee312

(1981) [47] with a 5×5 filter size is used to filter the intensity data. As noted by313

Jong-Sen Lee et al. (2009) [48], this step is essential in almost any analysis of radar314

images, due to the speckle noise aggravation of the interpretation process.315

• Terrain correction: Projects the pixels onto a map system (WGS84 was selected) and316

re-sampled to a 10m spatial resolution. Also, topographic corrections with a Shuttle317

Radar Topography Mission (SRTM) digital elevation model (DEM) is performed.318

Corrects the distortions over the areas of the terrain.319

• Linear to Decibel (dB): The dynamic range of the backscatter intensity of the320

transmitted radar signal values is usually a few orders of magnitudes. Thus, these321

values are converted from linear scale to logarithmic scale leading to an easier to322

manipulate histogram, also making water and dry areas more distinctive.323

The analysis of the obtained Sentinel-1 images that are extracted from the Coperni-324

cus Open Access Hub (previously known as Sentinels Scientific Data Hub), carried out325

in order to estimate the Water-bodies Masks (water delineation maps). Particularly, we326

perform histogram thresholding on the processed VH band of the Area of Interest (AoI).327

The deep valley of the histogram separates the inundated from the non-inundated areas.328

This thresholding technique works better when there is adequate number of inundated329

areas in order to distinguish them from the dry ones, elsewise threshold extraction may330

fail. In the satellite images of the areas that we study it is quite common that water331

and land areas are not in balance. Thus, in order to increase the chance to estimate a332

valid threshold we split the image to nine (9) tiles and then perform the thresholding333

to each one of them, calculating eventually the average threshold that is used in the334

whole image to separate the inundated from the non-inundated areas. This pixel-based335

classification of the region of interest, will be fused with the information from DEM to336

estimate the Water Depth. For each separate water body (sub-area) of a water mask,337

the maximum elevation is detected using the DEM. Then, for this sub-area the Water338

Depth is estimated by subtracting each pixel DEM value from the maximum elevation. It339

should be noted, that flood depth along with flood duration directly contribute to flood340

occurrence [26].341

3.4. Machine Learning techniques342

In this work, we utilised a well-known machine learning techniques for classifica-343

tion, namely Support Vector Machines (SVMs), Naive Bayes (NB), an ensemble learning344

method called Random Forest (RF) and a feed-forward Neural Network (NN). A brief345

description of them is the following:346

• Support Vector Machine - SVM: Support Vector Machine (SVM) Classifier [49]347

represents a supervised machine learning technique that exploits the abilities of348

hyperplanes, reshaping the nonlinear world into linear in order to classify the349
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features. Hyperplane is a decision plane that aims to separate a set of objects and350

label them into different classes. SVM consists a method which is aiming to separate351

in more efficient way the features using hyperplanes.352

• Naive Bayes - NB: According to Bayes Theorem, we deployed the statistical classifi-353

cation technique, Naïve Bayes (NB) classifier. This classifier belongs into the group354

of supervised learning algorithms and happens to be one of the simplest with high355

accuracy and speed, especially when it collocates with large datasets. NB is using a356

classifier model which is assigning class labels into the problem events, represented357

as vectors of feature events, where a set is used to annotate the class labels.358

• Random Forest - RF: The Random Forest (RF) [50] is a well-known ensemble359

machine learning method either for classification or regression. The objective of this360

classification technique is to compare and analyze the dataset variables to define361

new weights for each factor. In our case of study, the RF model exploits decision362

trees in order to calculate and estimate the connection between Flood Hazard Index363

labeling and Flood feature factors values, focusing on the end to classify each vector364

of values into a predicted label. RF is simple, fast, able to handle large datasets, it365

has generally high outcome through randomization and is applicable to multiclass366

algorithm characteristics.367

• Neural Network - NN: Neural Networks can be portrayed as the hierarchical368

multilevel relationships between neurons in a network of neurons similar to the369

function of the brain. The neurons implement a feedback mechanism with each370

other, transmitting the necessary signals to the next levels, based on the received371

input received from the respective previous levels, reaching one or more final372

results.373

3.5. Model evaluation metrics374

• Confusion matrix: Confusion Matrix is a table (Table 1) that presents the results375

from classifiers, using some specific terms, such as “True positives (TP) “the pre-376

dicted and actually positive result, “False positives (FP)” the predicted positive but377

actually negative result, “True negatives (TN)” the predicted and actually negative378

result and “False negatives (FN)” the predicted negative but actually positives.379

Table 1. Confusion matrix representation.

Actually Positive Actually Negative

Predicted Positive True Positives (TPs) False Positives (FPs)
Predicted Negative False Negatives (FNs) True Negatives (TNs)

• Accuracy: Accuracy is the most commonly percentage metric for machine learning
models judging the accuracy of the results and can me calculated using confusion
matrix terms:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

• Precision: Precision answers the question of what analogy of the positive results
was in fact correct and can be calculated using:

Precision =
TP

TP + FP
(6)

• Recall: Recall on the other hand, answers the question of what analogy of true
positives was identified correctly and can be calculated using:

Recall =
TP

TP + FN
(7)
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• F1-score: F1-Score is a measure to evaluate classification systems and is a way to
combine the precision and recall results. It can be described as the harmonic mean
of precision and recall and can be calculated using:

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

• Cross-Validation k-fold: Cross-validation is a statistical method of evaluating380

machine learning models, where it divides the dataset into random K-segments381

in order to use them for model training and comparing them we select the best382

model. The process of cross-validation, has a single parameter k, which refers to383

the number of segments that will randomly separate each set of data. In our case k384

is equal to 10 and we choose the best model using the average result per training.385

4. Methodology386

In the case of extreme natural events, such as floods, the hazard, exposure and387

vulnerability can be identified when interactions between these events and human388

societies are assessed. Flood Hazard can be estimated from the physical characteristics389

of the flood event such as the extent, water depth, persistence, and flow velocity. The390

hazard outcome is a map of flood intensity, provided by the hydrological analysis and391

modelling i.e., flood frequency analysis, geomorphological characteristics of the region392

under assessment (pathway) and manufactured barriers against the hazard (attenuation)393

elements of the assessed area. Conventionally approaches consider different return times394

and measures of intensity, producing multiple hazard maps [13,14].395

Furthermore, the exposure refers to the characteristics of the people and assets that396

can be affected by flooding, focusing mainly on the social, environmental and economic397

value of them. Vulnerability is the human dimension of flood disasters and is the result of398

the range of economic, social, cultural, institutional, political, and psychological factors.399

The physical component is captured by the likelihood that receptors located in the area400

considered, could potentially be harmed (susceptibility of receptors). The social one is401

the ex-ante preparedness of society given their risk perception of awareness to combat402

hazard and reduce its adverse impact or their ex-post skills to overcome the hazard403

damages and return to the initial state (represented by adaptive and coping capacities).404

These can increase the susceptibility of an individual, a community, assets, or systems to405

the impacts of flood hazards [51–53].406

The proposed framework tailors the definition for the disaster risk which was407

defined in 2017 by the UN Office for Disaster Risk Reduction (UNISDR) and includes the408

Sendai Framework for Disaster Risk Reduction 2015-2030 [53,54]. Therefore, Disaster409

Risk (R) is defined as the potential loss of life, injury, or destroyed or damaged assets410

which could occur to a system, society, or a community in a specific period of time,411

determined probabilistically as a function of hazard, exposure, vulnerability and capacity.412

Based on the above term, in the field of natural hazards, the disaster risk results from413

the coupling between hazard (H), vulnerability (V) and exposure (E):414

Disaster Risk = f (Hazard, Vulnerability, Exposure) (9)

In our approach, the severity level of the flood hazard is dynamically assessed by415

employing machine learning techniques that are able to multimodal fuse data generated416

by the analysis of Sentinel-1 images and GIS-based data. Then, a rule-based approach is417

utilised in order to estimate in near real-time the vulnerability and the exposure in the418

region of interest. Specifically, the proposed framework consists of ten (10) successive419

steps as illustrated in the following figure (Figure 3).420
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Figure 3. Flowchart of the Dynamic Flood Hazard Assessment Algorithm.

The first two steps concern the specification of the area of interest and the choice of421

dates where flood events were carried out. The essential condition is the existence of the422

satellite images from the study area. Steps 3-7 concern the processes for the creation of423

flood hazard maps in near real-time, when new satellite images appear for the particular424

area. The water mask, water depth and velocity of the water body along with other425

flood conditioning factors which are derived from the analysis of satellite imagery or426

extracted from GIS tools, are fused by employing machine learning techniques. As a427

result, is the generation in near real-time flood hazard maps that highlight the areas that428

are affected by or are vulnerable to a potential flood hazard.429

The remaining steps concern the assessment of vulnerabilities, exposure upon430

three main categories concerning the people, economic activities, and environment,431

cultural-archaeological assets and protected areas. A rule-based approach has utilised432

for this purpose. In the last step, the combination of the assessments of the hazard,433

vulnerabilities and exposure generates the hydraulic risk. In the following sections, the434

steps of the proposed methodological framework are described in more details.435

4.1. Dynamic Flood Hazard Assessment Algorithm436

The proposed approach for Dynamic Flood Hazard Assessment consists of seven437

(7) steps as they are illustrated in the Figure 3. Specifically, a study of the area of438

interest should be realised including the gathering of appropriate information from439

past extreme flood events. Then, the data acquisition phase should be taken place and440

the appropriate features are extracted from the data aiming to create a dataset for the441

application of machine learning methods. The obtained data should be homogenised442

and pre-processed so as to deal with missing values or outliers, data impurity issues,443

different ranges over the features, etc. Hence, a flood inventory will be created that444

contains data suitable for apply Machine Learning modeling. In the training/testing445

phase machine learning models will be fit to the data and evaluate their performance446

in terms of their accuracy. The best machine learning model is chosen and utilised in447

Validation phase to create the flood hazard maps.448
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4.1.1. Study Area and Historical Flood Events449

As aforementioned (Section 3.1) the area of interest to further study is located in the450

municipality of Trieste. For this particular region, past flood events were chosen in dates451

that there are satellite imagery that captured the events.452

4.1.2. Data Acquisition and Feature Extraction453

The processes of data collection and feature extraction aiming to create adequate454

feature space that will be utilised in the modelling phase are included in this step. The455

data will be gathered from two diverse sources (Figure 3), namely from the analysis of456

satellite images and the DEM.457

The Sentinel-1 Images (SAR) were analysed by employing the preprocessing steps458

that were described in the Section 3.3. Their spatial resolution was equal to 10m and459

temporal resolution was approximately 6 days or less. The outcome of these steps460

undergoes a histogram thresholding analysis that generates the appropriate water masks.461

The Flood Conditioning Factors that are employed in this work derived from the462

DEM as described in Section 3.2. Each one of these factors can be considered as an463

independent feature in the feature space. As they are provided as maps, they can be464

converted to raster image (format) with pixel size which is equal to the pixel size of the465

DEM. In this way, all the images will obtain the same resolution. Then, a feature space466

of nine (9) attributes (features) are formulated, in which each feature corresponds to one467

raster image. The number of entries in the dataset depends on the total number of pixels468

in each image (width x height).469

4.1.3. Data Preprocessing470

The dataset that has generated after the fusion of all the features, as it was described471

in the above section, should be subdue under preprocessing procedures including the472

followings:473

• Create annotated dataset: Upgrade the data set by adding a target variable so474

that Machine Learning techniques can be applied. Our goal is to create machine475

learning models enable to assess the flood hazard level and which are relied on the476

flood conditioning factors and the real-time analysis of satellite imagery. Hence,477

the target-variable should be the “Flood Hazard” that receives three potential478

values, namely Moderate (Low) Hazard, Medium Hazard and High Hazard. To be479

annotated the dataset, the following rule will be applied [44,55]:480

If WaterVelocity < 1m/s and 0m < WaterDepth < 1m Then Moderate Hazard
Else If WaterVelocity < 1m/s and WaterDepth ≥ 1m Then Medium Hazard
Else If WaterVelocity ≥ 1m/s and WaterDepth > 0m Then High Hazard

481

It should be mentioned here that the above rule is based on hypothesis of medium482

probability of the flood, which has a 100-year return period in the study area.483

• Handle Imbalanced dataset: due to the facts that inundated areas usually are a484

quite small portion of the whole region of interest and furthermore floods are a485

quite rare extreme event, then it is expected the majority of entries in the “Flood486

Hazard” will belong to the Moderate Hazard class causing an imbalanced dataset.487

Hence, the machine learning models will be biased to the majority class. To tackle488

with this issue a random sampling is performed, and a portion of the majority class489

is selected equal to the amount of data that belong to the other two classes.490

• Handle missing or extreme values: pixels with missing values or extreme values491

that indicate areas that are out of the interest, e.g. inside the sea, should be detected492

and removed from the analysis.493

• Data Normalisation: the aim is to eliminate the numerical differences between
the features and transform them to the same range. Machine learning models
require that the input data are normalized using the same range, since the bias may
occur in the results due to the bigger magnitude of the initial untransformed data.
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Hence, the min-max scaler is utilised that transforms each one of the input features
(predictors) to min/max scale (i.e. [0,1] scale). The formula is given as follows:

X =
x − xmin

xmax − xmin
(10)

where X is the normalized data, x is the raw data, xmin is the minimum value of494

each feature vector, and xmax is the maximum value of each feature vector.495

It should be mentioned that the above two steps, namely the data acquisition and496

feature extraction as well as the preprocessing could be performed iteratively taking into497

consideration historical flood events in a specific region. As a result, a Flood Inventory498

would be created that will be exploited to fit Machine Learning models capable to assess499

the flood hazard.500

4.1.4. Training, Testing and Validation501

In this phase, various Machine Learning methodologies are applied to aim to assess502

the flood hazard relied on the information from the Flood Inventory. The goal is to503

select the best machine learning model in terms of precision in the estimation of flood504

hazards. To achieve this, the dataset is divided randomly into two subsets. One portion505

of 70% of the data is commonly utilised for training and the rest 30% for testing so506

as to evaluate the capability of each model for generalisation. In this work, we use507

four different machine learning approaches, namely Naïve Bayes (NB), Random Forest508

(RF), Support Vector Machines (SVM) and Neural Networks (NN). The accuracy of each509

model is estimated in terms of the statistical validation measures, such as Accuracy,510

Precision, Recall and F-measure as well as the corresponding Confusion Matrix. The511

outcome (target) of the Machine Learning model is the Flood Hazard Index (H) which is512

estimated for every pixel on the area of interest and takes values between 0 and 1. Flood513

Hazard Index represents the probability of flood occurrence in an area of interest and514

classified into three (3) categories, namely Moderate, Medium and High.515

4.1.5. Flood Hazard assessment and mapping516

The above process results in the classification of each pixel in terms of the level of517

severity of a potential flooding event that expressed by the Flood Hazard Index. To color518

the necessary labels of the Flood Hazard categories, we followed coloring suggestions519

by end-users (AAWA). The outcome of this process is a flood hazard map.520

4.2. Dynamic Flood Risk Assessment Algorithm521

To estimate the Hydraulic Flood Risk, it is necessary to calculate three basic pa-522

rameters, namely the Flood Hazard, the Vulnerability and the Exposure, as mentioned523

above. The first parameter relates with the Flood Hazard Index which is estimated524

by adopting the process that proposed in Section 4.1 by fusing information from the525

analysis of Satellite images and GIS-related data.526

The other two parameters are the Vulnerability and Exposure of socioeconomic527

elements in the impacted area. The flood risk assessment algorithm presented in this528

work has been developed in collaboration by AAWA, as an adaptation of the procedure529

presented in AAWA’s Flood Risk Management Plan (FRMP) of the Eastern Alps River530

Basin District. FRMP has been redacted by AAWA in compliance with the Directive531

2007/60/EU, which also prescribes a periodic update of the contents of the plan every532

six year. The first iteration of the plan was finalized in 2015 and approved in 2016 [44],533

while the second iteration (referring to the period 2022-2028) is being finalized [55]. From534

first to second cycle, some of the criteria have been updated. The methodology presented535

in this work is coherent with the newest criteria.536

According to the Flood Risk Management Plan (FRMP), for the estimation of the537

Vulnerability and Exposure crucial and necessary is the knowledge of the usage and538

land cover of the area of interest. Therefore, in this work we employ geospatial data539
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files, such as Corine Land Cover [56]. Then, a specific land use type from FRMP540

is corresponded with Corine Land Cover Codex (CLC) and the Manning roughness541

coefficient is estimated [44].542

4.2.1. Vulnerability estimation543

To mitigate the consequences of flood disasters, suitable Disaster Risk Reduction544

(DRR) measures need to be carried out. In addition to flood hazard awareness and545

knowledge, also information on Elements at Risk (EaR), i.e., people, infrastructure and546

assets, that may suffer damage when exposed to a flood hazard, needs to be consid-547

ered [57]. EaR’s vulnerability assessment toward the specific flood hazard at different548

event magnitudes, and the resulting risk allows the effectively monitored and early549

warnings to be given in case in an impending hazardous situation.550

In this work, the Flood Risk Assessment algorithm defines three different parame-551

ters of vulnerability: vulnerability of people (Vp), vulnerability of economic activities (Ve) and552

vulnerability of environments and cultural-archaeological assets and protected areas (Va), all553

these parameters are estimate for every pixel and their values are between 0 and 1. These554

values depend both on the intrinsic characteristics of the different exposed assets, as555

well as the hydraulic condition (water level and water depth) that are established during556

the flood and they can affect the capacity of response. In other words, Vulnerability is557

dependent on the specific nature of the element, which can be related to land use, and558

simultaneously by the flood hazard. In the FRMP, a detailed description behind the559

definition of these rules is provided [44].560

• Vulnerability of people (Vp): The physical vulnerability associated with people561

considers the values of flow velocity (Water Velocity - v) and Water Depth (h) that562

produce “instability” with respect to remaining in an upright position [58]. FRMP563

proposes a semi-quantitative equation that links a flood hazard index, referred564

to as the Flood Hazard Rating (FHR), to h, v and a factor related to the amount of565

transported debris, i.e. the Debris Factor (DF). According to this algorithm, the land566

use type classes are grouped in order to calculate the Debris Factor (DF) concerning567

the possibility of floating materials which can harm the population.568

After the calculation of DF, the estimation of the Flood Hazard Rating (FHR) is
carried out, by utilizing the Water Depth and Water Velocity according to the
following formula:

FHR = h ∗ (v + 0.5) + DF (11)

where h is the Water Depth, v is the Water Velocity and DF is the Debris Factor. Vp569

is estimated according FHR (Table 2)570

Table 2. Estimation of Vulnerability of people according to FHR.

FHR Vp (0 ≤ Vp ≤ 1)

FHR < 0.75 0.25
0.75 ≤ FHR < 1.25 0.75

FHR ≥ 1.25 1

• Vulnerability of economic activities (Ve): The vulnerability associated with eco-571

nomic activities considers buildings, network infrastructure and agricultural areas572

[58]. It is a pixel-by-pixel function of the Water Depth (height) and Water Velocity573

(flow velocity). The vulnerability function depends on the specific nature of the574

assets and thus different functions are applied to land use types.575

• Vulnerability of environments and cultural-archaeological assets and protected576

areas (Va): Environmental flood susceptibility is described using contamination/577

pollution and erosion as indicators. Contamination is caused by industry, ani-578

mal/human waste and stagnant flooded waters. Erosion can produce disturbance579
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to the land surface and to vegetation but can also damage infrastructure [58].From580

AAWA’s FRMP [44,55], the value of Va in certain land use is 1, while assuming a581

residual Va value for all other.582

4.2.2. Exposure estimation583

Exposure depends on the spatial collocation of the assets, which is strictly related584

to the land use, and on the evaluation of the potential negative consequence for each585

category of the exposed element. Flood risk algorithm sets three different exposure586

parameters: exposure of people (Ep), exposure of economic activity (Ee), exposure of environment587

and cultural elements (Ea). All these parameters are estimate for every pixel and their588

values are between 0 and 1. For more detailed information about the literature behind589

the definition of these rules, we remand to the FRMP [44,55].590

• Exposure of people (Ep): First step to calculate the Ep, is to estimate the population591

of the area of interest per pixel which is divided into census areas by the Italian592

national Institute of Statistics (ISTAT). The dataset of population is given to us593

via shapefiles which is a form of geospatial vectors, so we can calculate per pixel594

according to geolocation data. The calculation of Ep can be produced by:595

Ep = Fd ∗ Ft (12)

where Fd is a factor characterizing the density of the population in relation to the596

number of people present. For the population estimations in specific areas, census597

data have been employed. Ft is the proportion of time spent in different locations598

(e.g. houses and schools), using the land use classes.599

• Exposure of economic activity (Ee): The Ee calculation depends solely on land use600

of the area of interest.601

• Exposure of environment and cultural elements (Ea): As with Ee, exposure of602

environment and cultural elements – Ea, is estimates solely of land use.603

4.2.3. Hydraulic Flood Risk Assessment604

Considering we have all the estimations (Hazard, Vulnerability, Exposure) per pixel,605

we can calculate the Hydraulic Flood Risk [44,55,58] using the following formula:606

R =
ppH ∗ Ep ∗ Vp + peH ∗ Ee ∗ Ve + pa H ∗ Ea ∗ Va

pp + pe + pa
(13)

where H is the Flood Hazard, E is the Exposure, V is the Vulnerability and pp pe pa607

are the weight parameters derived from FRMP [44,55]:608

• pp = 10, if there are inhabitants609

• pe = 1, if there are economic activities610

• pa = 1, if there are environments and cultural-archaeological assets and protected611

areas612

The Hydraulic Flood Risk categorization is performed using the Table 3 bellow613

[44,55]:614

Table 3. Classification of Hydraulic Risk into four classes

Risk R Level of risk Color

0 ≤ R < 0.2 Moderate Very light lime green
0.2 ≤ R < 0.5 Medium Soft yellow
0.5 ≤ R < 0.9 High Soft orange
0.9 ≤ R ≤ 1.0 Very High Very light red

In order to create the corresponding Flood Risk Map for the area of interest, the615

assessments of the Hydraulic Flood Risk correspond to specific colors in RGB scale.616
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5. Results and Discussion617

In order to evaluate the performance of the Dynamic Flood Hazard Assessment618

algorithm in terms of its accuracy, firstly the machine learning models need to be created.619

This takes place in the Training/Testing phase (Sec. 4.1.4) of the proposed methodological620

framework. Then, in the evaluation phase, the trained models are validated in terms621

of their precision, namely to estimate the class of Flood Hazard Index over “unknown”622

data.623

For this purpose, a series of experiments were realised in order to find out the best624

set of parameters during the training of machine learning models which will result in625

the chosen of the best model. The dataset that we used in this phase, formed based on626

satellite images and DEM data over specific dates where floods had occurred, due to627

the appearance of extremely high sea tides and heavy rains that were observed in the628

municipality of Trieste.629

As mentioned above, the dataset divided into two sets, 70% of the entries used630

for training purposes and the rest 30% for testing the accuracy of the models. Cross-631

Validation k-fold in order to evaluate the machine learning models is used. In our case,632

the parameter k is set equal to 10 choosing the best model with the help of the average633

results. A set of parameters for each one of the machine learning model that they have634

been employed and evaluated is presented in the Table 4.635

Table 4. Set of parameters per machine learning model

Model Set of Parameters

Random Forest Criterion: {Gini, Entropy}, Maxfeatures: {Auto, Log2, Sqrt, None},
n_Estimator: {50, 100, 200, 500}

Naïve Bayes α : {0.01, 0.1, 1}
SVM Kernel Functions: { rbf, poly, sigmoid }
Neural Network Activation Function: {ReLu, Sigmoid}, #Neurons: {1, 2, 4, 6, 8},

Epochs: {100, 300, 500}

Table 5 presents the experimental results over the evaluation metrics Precision,636

Recall and F1-Score achieved during the training of the machine learning models. Based637

on these metrics, the selection of the best model was done using the methodology of638

best_estimator (sklearn library). Random Forest was selected as best model, using the639

hyperparameters: Criterion: Gini, Max features: Auto, n_Estimator: 50) as it achieved the640

best performance, its average precision is approximately 0.9999995. The evaluation of641

the model with the most efficient hyperparameters in relation to 30% of the data as a test642

set, is shown in Figure 4 below, which depicts the Confusion Matrix.643



18 of 30

Table 5. Summary table of results of the best-trained machine learning models over the test set

Model Categories Precision Recall F1-Score

Random Forest High Hazard 0.99 0.99 0.99
(Criterion: Gini, Max features:
Auto, n_Estimator: 50)

Medium Hazard 0.99 0.99 0.99
Moderate Hazard 0.99 0.99 0.99

Naïve Bayes High Hazard 0.93 0.91 0.92

(α : 0.01) Medium Hazard 0.91 0.97 0.94
Moderate Hazard 0.00 0.00 0.00

SVM High Hazard 0.96 0.98 0.97

(Kernel Function: poly) Medium Hazard 0.96 0.99 0.98
Moderate Hazard 0.98 0.97 0.98

Neural Network High Hazard 0.99 0.99 0.99
(Act.Fun.: ReLu, #Neur.: 8,
Epochs: 500)

Medium Hazard 0.99 0.99 0.99
Moderate Hazard 0.99 0.99 0.99

Figure 4. Confusion Matrix of the best Random Forest model

Furthermore, the relative importance of the features namely the significance of each644

one of the attributes that participated in the training of a machine learning model was645

examined and the results are illustrated in the following figure (Figure 5):646
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Figure 5. Features Relative Importance of the best Random Forest model

The estimation of the features’ relative importance was carried out by employing647

the best ML model, namely the Random Forest method. The features Water Velocity and648

Water Depth exhibit a significant role in the training and the inference of the ML model649

as in total their relative scores approximate 66% (Table 6). The Slope and Roughness of the650

terrain indicate quite high importance so that the trained model can classify in terms651

of the severity levels the input patterns. The other geomorphological factors, such as652

Elevation (DEM), TRI, TPI and Aspect as well as the Water Mask do not evince to be so653

importance in the training process. An explanation of this could be the fact that the study654

area is coastal, smoothness and without significant differences in elevation. Moreover,655

the lack of variability in the values that the Water Mask receives is another reason to656

justify the low relative importance of this feature. The Water Mask implies the existence657

of water or not in a pixel, consequently, the inundated pixels are significantly less than658

the dry ones, in the dataset.659

Table 6. Relative Importance scores of the features

Feature Relative Importance score

Water Velocity 43.75939
Water Depth 22.99143

Slope 13.60606
Roughness 11.90979

DEM 3.87064
TRI 2.73504
TPI 0.23988

Water Mask 0.84437
Aspect 0.04339

5.1. Evaluation of Dynamic Flood Hazard/Risk algorithm660

The goal of these experiments is to evaluate the performance of Dynamic Flood661

Hazard algorithm concerning its capability to produce accurate flood hazard maps,662

when the flood hazard assessment carries out using the best trained RF model.663

For this purpose, the dataset that we employed was generated by satellite images664

and GIS data in the areas of Trieste, Muggia and Monfalcone following similar process665

as that we have already presented above. The satellite images refer to historical flood666

events, due to the high sea tides, “unknown” to the trained RF model.667
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Similarly, to evaluate the performance of the Dynamic Flood Risk Algorithm, we668

extend the former analysis over the evaluation datasets that have created by utilised the669

satellite imageries in the areas of interest for various dates. The goal is to estimate the670

Hydraulic Flood Risk (R) for each entry in the dataset, assign its value to a corresponding671

risk level and create the corresponding Flood Risk Map.672

673

Trieste 2019/09/23674

675

The confusion matrix (Figure 6) implies the efficacy of the proposed approach as676

the algorithm manage to inference correctly the entries of the validation dataset into the677

corresponding flood hazard labels (Predicted labels). In Figure 7 and Figure 8 the flood678

hazard and risk map in the Trieste area at 2019/09/23 are exhibited respectively.679

Figure 6. Confusion Matrix for best trained Random Forest model over Trieste, 2019/09/23
dataset in Validation Phase.
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Figure 7. Flood Hazard map for Trieste at 2019/09/23.
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Figure 8. Flood Risk map for Trieste at 2019/09/23.

Muggia 2018/10/29680

681

Similarly, the results of the application of the proposed approach is also examined in682

the Muggia area at 2018/10/29. The confusion matrix (Figure 9) indicates the efficiency683

of the proposed approach. The flood hazard and risk map in the specific area and date684

are illustrated in the following figures (Figure 10 and Figure 11) respectively.685
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Figure 9. Confusion Matrix for best trained Random Forest model over Muggia, 2018/10/29
dataset in Validation Phase.

Figure 10. Flood Hazard map for Muggia at 2018/10/29.
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Figure 11. Flood Risk map for Muggia at 2018/10/29.

Monfalcone 2019/09/24686

687

The proposed approach managed to classify correctly the pixels, that shape the688

evaluation set in the Monfalcone area on 2019/09/24. The results are depicted in the689

corresponding confusion matrix (Figure 12). The Figure 13 and Figure 14 illusrate690

the flood hazard and risk map in the Monfalcone area at 2019/09/24 are exhibited691

respectively.692

Figure 12. Confusion Matrix for best trained Random Forest model over Monfalcone, 2019/09/24
dataset in Validation Phase.
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Figure 13. Flood Hazard map for Monfalcone at 2019/09/24.

Figure 14. Flood Risk map for Monfalcone at 2019/09/24.

5.2. Discussion693

In this work, the proposed framework aims to provide to the Authorities a method-694

ology for evaluating and mapping the level of the risk of a specific flood event using free695

data from widely available sources, namely the satellite (Sentinal-1) data and GIS-related696

data. Initially, four well-known machine learning approaches, namely Naïve Bayes (NB),697

Random Forest (RF), Support Vector Machines (SVM) and Neural Networks (NN), have698

been employed to fuse the available information and estimate in near real-time the flood699

hazard levels. From the experimental evaluation process, Random Forest has exhibited700

slightly better performance in terms of the F1-score compared with the others. Therefore,701

we used this approach, as a predictor, in order to create flood hazard maps in the region702

of the three Municipalities (Trieste, Muggia and Monfalcone) during the evaluation703

process. The high-precision scores achieved during the training and evaluation process704
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by machine learning algorithms are mainly due to the pixel-based approach that we705

followed, instead to analyse a sampling of pixels. Hence, the trained machine learning706

algorithms are able to classify correctly areas in terms of their flood hazard levels. Going707

a step further, a rule-based approach has been applied, based on the AAWA’s FRMP,708

which combines the flood hazard assessments with flood exposure and vulnerability709

estimations from the region of interest. The final goal was to produce a near real-time710

flood risk map.711

Concerning the flood conditioning factors, it should be mentioned that the impor-712

tance of the flood conditioning factors depends on the geomorphological characteristics713

in the area of interest as well as the historical flood events that were examined [22,59]. In714

this work, the Water Velocity, Water Depth, Slope and Roughness have a dominant role715

(approx. 91.5%) to the training and evaluation of the machine learning approaches that716

were applied. This is a rational conclusion due to the fact that these factors affect the717

propagation of flood and are the most important hydrodynamic parameters. Slope and718

roughness affect flow velocity and the water depth. As more an area is smooth and steep719

the more is higher the velocity of the flood. On the other hand, high roughness slows720

the water flow but increases the water level. Moreover, as described in the Section 3.1,721

the study areas are characterized by low slope and elevation of the ground above sea722

level (coastal areas), which are factors that favor floods due to high tides.723

Furthermore, water depth and water velocity, as described in the Section 4 are the724

basis for both hazard and vulnerability estimations. These two factors participate in the725

annotation process in order to classify each pixel in one of the severity level categories726

(Section 4.1.3). The lack of annotated datasets to train machine learning models that727

will enable the assessment of the flood hazard levels is considered a crucial issue for728

the development of a robust system [5,16]. In this work, to overcome this limitation, an729

automated rule-based approach has been adopted which inspired by the AAWA’s FRMP.730

In general, the proposed framework enables Authorities to evaluate the flood risk731

in near real-time by utilising low cost or free of charge satellite data and thus it can732

be used to overcome the gap of information in the areas with an irregular diffusion of733

hydro-meteorological sensors. Additionally, even in the presence of legacy Decision734

Support Systems like monitoring water distribution networks or forecasting systems,735

the proposed framework can provide useful providing complementary information.736

For example, hydrometers record a punctual measure of water level inside a fluvial737

section. Thus, in the case of river overtopping, they cannot offer any useful information738

about the extension of the flood external to the river, as well as about its impact on739

the exposed assets. Similar consideration applies to flood forecasting system based on740

1D hydraulic models. Even in the case of the availability of 2D hydraulics models, the741

information provided is limited to a hazard estimation, while the concept of risk is really742

crucial for effective response to an emergency situation and mitigating the consequences.743

Flood Risk in fact links together not only the intensity of the event itself (hazard) but also744

the potential impacts of the communities, economic assets, environment and cultural745

heritage.746

For this reason, the Flood Directive (2007/60/EC) highlights the importance of the747

redaction of flood risk maps as part of flood management plans. However, flood risk748

maps should be referred to a set of pre-defined hydraulic and hydrological scenarios749

(floods of certain return times), which may be different from the ones that occur during750

a real extreme event. From this perspective, this work aims to provide to the Authorities,751

as an integration to the ‘static’ flood risk maps, a ‘dynamic’ tool for having a quick752

and reliable estimation of the level of risk referred to a specific flood event when it753

occurs. Moreover, the proposed methodology can be used to assess the risk caused by754

different flooding mechanisms, including the ones that are currently not dealt by the755

Flood Directive (e.g. urban flood).756

Finally, the proposed approach can be used to help the calibration of 2D hydraulic757

models, which is a challenging and time-consuming process. That means the operators758
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have to simulate a flood event based on the past events for whom hydrometer’s record-759

ings/measurements are available. Then, they should confirm whether the results of the760

model are coherent with those measurements. However, measurements are punctual (a761

hydrometer measures the water level in a specific place, called river section) whereas762

the 2D model covers a broader area. Hence, the calibration of a 2D model that covers a763

vast area by using only spare punctual values is not an easy task. Moreover, although it764

is very important to calibrate a 2D model in surrounding areas of the river, however, the765

hydrometers are located inside the river and as a result, the water level measurements in766

the flooding areas (areas outside the river due to overtopping) do not available.767

6. Conclusions768

In flood management studies, the creation of accurate flood hazard and risk maps is769

essential for the preparedness and mitigation of an extreme flood incident. In the recent770

decade, numerous researches have been published aiming to assess the flood hazard771

and create more reliable hazard maps. State-of-the-art methodologies utilise advanced772

remote sensing techniques including Satellite imagery analytical tools and GIS-related773

data along with machine learning techniques aiming to estimate the flood susceptibility774

and develop the corresponding maps. In this work, a flood hazard assessment algorithm775

proposed which deals with the problem of flood monitoring and mapping. It develops a776

machine learning model which is enabled to assess the severity levels of flood hazard.777

The utilisation of satellite imagery along with the flood conditioning factors that are778

generated by GIS, provide the opportunity to create an extensive flood inventory. The779

proposed approach attempts to resolve the two main challenges which are:780

1. the domain lack of annotated dataset for the training and evaluation of the machine781

learning techniques able to detect and monitor the flood event by utilisation remote782

sensing techniques.783

2. the low temporal frequency of satellite imagery acquisition, which hinders the784

real-time monitoring of an evolving flood.785

Furthermore, in this paper an extension of the Dynamic Flood Hazard algorithm was786

realised in order to estimate the hydraulic flood risk combining vulnerability and ex-787

posure information from impacted areas. Both approaches are evaluated in terms of788

their accuracy and their capability to create accurate flood hazard and flood risk maps.789

The results are quite promising and encouraging. However, improvements should be790

done in the direction of the integration social media information into the Flood Risk791

algorithm.792

Another aspect that we should deal with is the reduce the processing time and793

computational effort. These are mainly affected by the resolution of the satellite imagery,794

the DEM and the other derived flood conditioning factors. Due to the pixel-based795

approach that was followed in the analysis, higher resolutions of the images generate796

bigger scale datasets, which are demanding to resources. On the other hand, a poor797

resolution of the images affects the quality of the flood hazard and risk assessments798

and the generated maps. Hence, we should find out a trade-off between the quality of799

images and framework robustness. A potential solution to increase the quality of the800

DEM or its unavailability, is the adoption of low-cost UAV applications.801
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The following abbreviations are used in this manuscript:806

AAWA Alto Adriatico Water Authority
AHP Analytical Hierarchy Process
AoI Area of Interest
ANNs Artificial Neural Networks
CART Classification and Regression Trees
CRCL Crisis Classification
CLC Corine Landcover Codex
CNN Convolutional Neural Network
DEM Digital Elevation Model
DNN Deep Neural Network
DRR Disaster Risk Reduction
EaR Elements at Risk
Ep Exposure of people
Ee Exposure of economic activity
Ea Exposure of environment and cultural elements
FFPI Flash-Flood Potential Index
FHR Flood Hazard Rating
FR Frequency Ratio
FRMP Flood Risk Management Plan
GIS Geographical Information System
LIDAR Laser Imaging, Detection And Ranging
LR Logistic Regression
LULC Land Use Land Cover
MDA Multivariate Discriminant Analysis
NNs Neural Networks
RF Random Forest
SAR Synthetic Aperture Radar
SNAP Sentinel Application Platform
SVMs Support Vector Machines
TRI Terrain Ruggedness Index
TWI Topographic Wetness Index
UAVs Unmanned Aerial Vehicles
Vp Vulnerability of people
Ve Vulnerability of economic activities
Va Vulnerability of environments and cultural-archaeological assets

and protected areas
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