
This is the accepted version of the paper. The final version of the paper can be found at
https://ieeexplore.ieee.org/document/9850295

IEEE copyright notice: 978-1-6654-9952-1/22/$31.00 ©2022 IEEE

To cite this work: A. Spyros et al., ”Towards Continuous Enrichment of Cyber Threat Intelligence: A Study on a
Honeypot Dataset,” 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 267-272, doi:
10.1109/CSR54599.2022.9850295.

Towards Continuous Enrichment of Cyber Threat
Intelligence: A Study on a Honeypot Dataset

Arnolnt Spyros, Angelos Papoutsis, Ilias Koritsas, Notis Mengidis, Christos Iliou, Dimitris Kavallieros,
Theodora Tsikrika, Stefanos Vrochidis, and Ioannis Kompatsiaris

Information Technologies Institute, CERTH, Thessaloniki, Greece
{aspyros,apapoutsis,ilias.koritsas,nmengidis,iliouchristos,dim.kavallieros,theodora.tsikrika,stefanos,ikom}@iti.gr

Abstract—Cyber Threat Intelligence helps organisations make
the right decisions in their fight against cyber threats and
strategically design their defences by continuously providing
information regarding the cyber threat landscape. In this context,
honeypots are a widespread solution for gathering intelligence
about threat actors. However, honeypots do not inherently
provide information about the origin of threat groups, their
resources, capabilities and their impact. Thus, we propose an
approach that classifies threats, as highly or less abusive, based
on their behaviour characteristics using four ensemble machine
learning algorithms applied on security incidents identified in a
rule-based manner on a deployed honeypot. After prepossessing
and hyper-tuning of the parameters, the four models, Adaptive
Boosting Classifier (AdaBoost), Random Forest Classifier (RFC),
Light Gradient Boosting Machine (LGBM) and Extreme Gra-
dient Boosting (XGBoost), achieve good results, with RFC and
LGBM achieving the best recall (84%, 83%) and LGBM and
XGB the best AUC (91%, 90%).

Index Terms—cyber threat intelligence, machine learning,
honeypots, ensemble methods, Wazuh

I. INTRODUCTION

Due to the continuously increasing cyber-attacks in terms
of both volume and sophistication, organisations and critical
infrastructures are susceptible to a wide range of diverse
threats which can severely damage their day-to-day opera-
tions. Moreover, such cybersecurity incidents could also have,
depending on their impact, legal liabilities for the affected
organisations (e.g., GDPR sanctions). Therefore, organisations
need to implement a variety of security mechanisms to en-
hance the cybersecurity of their infrastructures; to this end,
gaining intelligence about the threat landscape, and specifically
about the severity and nature of the attacks, is of utmost
importance to an organisation. In this context of developing
effective defence mechanisms, the cybersecurity community
is increasingly sharing Cyber Threat Intelligence (CTI) in
order to assist organisations be better protected against modern
threats. While CTI contains valuable information, additional
actionable information could also be added to further increase
the value and usefulness of the available CTI. An important
example of such information is the potential level of abusive-
ness of the threat, as the knowledge of such information could
facilitate the proper allocation of resources, as well as improve
the overall Incident Response (IR) procedure.

To this end, this work proposes an approach which enables
the characterisation of the origins of a cyber-attack (i.e., the IP
addresses), based on their abusiveness. In particular, this work

proposes to classify the attacks as ”highly-abusive” or ”less-
abusive”, by employing Machine Learning (ML) algorithms on
the security incident logs generated by a deployed honeypot.
In this way, apart from the typical CTI information, such as
the Indicators of Compromise (IoCs), that is extracted from
security incidents in an organisation, we propose to further
enrich such actionable CTI with information regarding the
severity of the incident that has occurred. Therefore, the added
value is that, apart from leveraging the initial CTI information,
organisations would be able to further utilise and act upon the
additional information, in order to facilitate the adoption and
implementation of appropriate security measures (e.g. threat
modelling, allocation of the security resources, etc.) and thus
properly prioritise the containment of a threat based on its
level of abusiveness.

Specifically, the proposed method first identifies security
incidents in a rule-based manner and then classifies them
by using ML algorithms and in particular ensemble ML
methods that typically exhibit less bias and less variance;
to this end, the Adaptive Boosting Classifier (AdaBoost),
Random Forest Classifier (RFC), the Light Gradient Boosting
Machine (LGBM) and Extreme Gradient Boosting (XGBoost)
algorithms are considered. The experiments performed on a
dataset gathered from the deployed honeypot achieve promis-
ing results, indicating that the studied ensemble ML models
are highly effective concerning the classification of the severity
of the incidents, based on the level of abusiveness, even when
trained with a small amount of data.

Moreover, further to the aforementioned novelty of our work
and contrary to most existing work that utilises only publicly
available static datasets [1] that pose the risk of not being
relevant to the continuously evolving threat landscape, this
work utilises a new dataset gathered during the summer of
2021 based on a honeypot solution deployed on the cloud
in order to gather data related to cyber-attacks. The data is
constantly updated with new information from modern attacks
that are subsequently analysed to extract features that are
provided as input to the ML algorithms. The dynamic nature
of the data has the potential to enable the improvement of the
models as more data become available for their training.

II. RELATED WORK

Honeypots are decoy systems that are used to attract at-
tackers by exposing vulnerable services. They are considered a

valuable source for gathering information regarding the tactics
and techniques, as well as the attack patterns used against
the exposed services, thus providing useful and actionable
CTI. Additionally, honeypots are utilised in conjunction with
other security components (e.g., IDS and Security Information
and Event Management (SIEM) systems) in order to improve
and enhance their detection performance [2], [3]. For their
deployment, the majority of approaches utilise docker contain-
ers; low and medium-interaction honeypots are preferred, with
Dionaea1 and Cowrie2 being the most popular ones [2]–[5].

Various research efforts have tried to address the problem
of CTI classification. For example, a framework for gathering
CTI from Twitter posts has been developed [6]; this framework
is trained based on the features extracted from CTI using
threat information from public repositories, such as Common
Vulnerabilities and Exposures (CVE), and classifies unseen
tweets as normal or abnormal.

In [7], a framework was proposed for CTI extraction and
categorization using social media data. Particularly, a Convo-
lutional Neural Network (CNN) was used to identify CTIs’
targeted domain. In addition, IoC extraction approaches were
used to identify unseen types of IoCs. In the end, the generated
IoC and its domain tag (identified with CNN) were used to
create a categorised CTI with a specific domain.

In [8], a classification of CTI data originating from hacker
forums was performed using two different variants of Re-
current Neural Networks (RNNs). The data were classified,
using specialised web crawlers, into relevant or irrelevant. Two
variants of RNN, namely Gated Recurrent Unit(GRU) and
Long Short-Term Memory (LSTM), achieved a high accuracy.

In [9] an ontology-based threat assessment system was
proposed that utilises System Windows logs to classify system
processes, in real-time, as high-threat, medium-threat, low-
threat or unknown, based on the identified characteristics.
Automate responses to threat were utilised based on the
indicators of compromise. As a result a continuously updated
threat intelligence was generated.

Contrary to aforementioned research, we focus our analysis
on extracting more information regarding the attack source.
Specifically, the approach proposed in this work aims to ex-
pand the IoCs extracted from incident logs by combining them
with ML methods, in order to provide additional intelligence
about the level of abusiveness of the identified incident origin
and enrich the extracted CTI. Moreover, this work utilises a
newly collected dataset that contains actions of real attackers.
This aspect is considered quite important in the modern cyber-
security environment, due to the dynamic nature of the cyber-
attacks landscape which results in new attacks on a daily basis.

III. METHODOLOGY

This section describes the methodology of the approach
proposed in this work; its high-level architecture is depicted
in Figure 1. By considering attackers targeting a deployed

1https://github.com/DinoTools/dionaea
2https://github.com/cowrie/cowrie

honeypot to exploit vulnerabilities in the exposed services,
an agent deployed on the honeypot monitors the various log
paths and identifies any new entry that is added to these logs.
These are then analysed in a rule-based manner to identify
the security incidents and subsequently extract CTI-related
data (e.g., IP addresses, ports). Once the CTI is extracted, the
relevant information is analysed in order to extract features
which are provided as input to the ML-based models in order
to distinguish a security incident source as ”highly-abusive” or
”less-abusive”, i.e., to distinguish whether an IP is the origin
of a high-severity incident or not.

A. Data Collection and Information Extraction

The most appropriate honeypot solution for the purposes of
this work was selected on the basis of the following criteria:
(i) the services that each honeypot provides and how useful
these services are, (ii) the maturity level of the honeypot
solution, and (iii) the complexity of the deployment and
configuration of the honeypot. Upon extensive research, we
decided to deploy the Dionaea honeypot on a cloud Virtual
Machine (VM) located on the Amazon Web Services (AWS)
platform3. Dionaea is considered as a low-interaction honeypot
that supports several common services, including, but not
limited to, SMB, HTTP, and FTP.

Dionaea has been configured to store only security incidents
(i.e., cyber attacks), and not extensive logs, in order to reduce
noise. Dionaea has also been configured to store the logs in
JSON format to facilitate further processing, while a cron job
has been developed to compress and delete bitstreams (i.e.,
uploaded malware files).

The data collected from the honeypot are then stored in a
central database (namely Elasticsearch) for the extraction of

3https://aws.amazon.com/

Fig. 1. High-level architecture

attacks by utilising the Wazuh4 security platform. Wazuh was
selected since it is a free, open source, and enterprise-ready
security monitoring solution for threat detection, integrity
monitoring, incident response, and compliance, which uses
the Elasticsearch-Logstash-Kibana (ELK) stack as its back-
end. Concerning threat detection, Wazuh implements a rule-
based approach. In this work, a Wazuh agent is installed on
the honeypot VM and periodically monitors the honeypot logs
and forwards back to the Wazuh manager any new log entries
found. Therefore, the Wazuh manager is able to analyse the
gathered logs as soon as a security incident occurs in near real
time, through an encrypted and authenticated channel based on
Advanced Encryption Standard (AES).

To extract the information from the attacks, a signature-
based approach that employs a set of rules via regular expres-
sions is used. The extracted information includes a variety
information such as IoCs (e.g., IPv4 address, source port,
browser agent version) and the attack on the honeypot (e.g.,
destination IPv4, destination port, requested URL) which are
included in the CTI that is produced in a later stage. While
Wazuh currently contains more than 3000 predefined rules
for various services5, these rules do not cover all services
exposed by Dionaea and, therefore, 17 additional custom rules
were developed in order to expand the amount of the security
incidents that can be identified on our Dionaea honeypot,
such as connections to services (e.g., SQL, MySQL, SMB),
malware uploads, and SQL injections. The Wazuh manager
identifies any new attack found at the honeypot in real time
and stores the incident log in a alerts.json file that is then
parsed to extract CTI. The extracted CTI is subsequently used
as input by our ML models.

B. Feature Extraction and Selection

Feature extraction aims to extract features considered to be
useful in the context of intelligence enrichment by analysing
the logs generated from Dionaea. First, the total collected
requests are grouped into sessions by following a similar
approach used in the web bot detection problem [10]. Specif-
ically, the logs are initially split per IP; when an IP stays idle
(i.e., performs no request) for a period greater than 30 minutes,
a new session is created upon a new request. Then, the closed
session is analysed so as to extract IoCs and compose the CTI.

The employed features (see Table I for the full list) were se-
lected after (i) enumerating all protocols and request types by
Dionaea, (ii) examining a wide range of relevant works [11]–
[13] to assess the features extracted when similar protocols
are available in use cases relevant to the approach proposed in
this work, and (iii) considering features deemed useful towards
effective ML-based incident severity classification in terms
of reducing computational costs, eliminating data redundancy,
and reducing false alarms. Concerning the case of protocols
for which we did not find relevant work in the literature,
we defined new features (e.g., Port con count) based on the

4https://wazuh.com/
5https://documentation.wazuh.com/current/user-manual/ruleset/

getting-started.html

TABLE I
FEATURES EXTRACTED FROM THE GENERATED CTI

Feature Description

Con count # of Connections
Num of logins # of logins
Connection duration Connection duration
Port con count # of connections from a specific port
File uploads # of file uploads
URL length Length of requested URLs
URL length-max Length of the longest requested URL
URL length-min Length of the shortest requested URL
URL length-average Average length of requested URLs
HTTP requests # of HTTP requests
Bytes sent Total bytes sent
HTTP GET requests # of HTTP GET requests in a session
HTTP POST requests # of HTTP POST requests in a session
HTTP 3xx percentage % of HTTP requests that led to an

HTTP 3xx code response
HTTP 4xx percentage % of HTTP requests that led to an

HTTP 4xx code response
Image requests % of HTTP image requests
css requests % of HTTP css file requests
js requests % of HTTP JavaScript file requests
HTML to image ratio # of requested HTML files divided by

of requested image files in a session

functionalities supported in the deployed honeypot for those
protocols.

After feature extraction, we used various techniques to
perform feature selection on the collected dataset. First, we
removed features that depict high correlation with each other,
using the corr() method of SKLearn, a method based on the
Pearson correlation coefficient. We set the threshold to 0.80,
i.e., we remove features that depict correlations above this
value. Also, as another feature selection technique, we used
the mutual information method [14] to remove features that
did not contribute to finding the target value.

C. ML-Based Threat Level Classification

The ML-based models aim to enrich the CTI that is ex-
tracted from the original data. To this end, this work examines
the use of several ML methods and focuses on methods that
fall under the notion of ensemble methods, i.e., techniques
where different or similar models contribute in cooperation to
the final prediction. Different research efforts have highlighted
the superior predictive power of ensemble methods in clas-
sification tasks [15], compared to simple models, including
categorisation tasks in the cyber-security domain [16], [17],
given that they exhibit less bias (i.e. are more “comprehensive”
models) and less variance (i.e. less chance of over-fitting).

The main types of ensemble methods are as follows [16]:
(i) Bootstrap aggregation (Bagging) [18]: models are trained
in parallel, with each model being trained separately from
the others, while a majority vote is used for prediction; (ii)
Boosting [19]: models are trained in sequence, with each
model learning from the prediction mistakes of the previous
model, while a weighted vote is used for prediction; and (iii)

Stacking [20]: the predictions of well-performing base models
are combined to build a new model and provide better results

This work considers four different ensemble models: the
Adaptive Boosting Classifier (AdaBoost) [21], the Random
Forest Classifier (RFC) [22], the Light Gradient Boosting
Machine (LGBM) [23] and the Extreme Gradient Boosting
(XGBoost) [24]. These fall into the bagging (RFC) and boost-
ing (Adaboost, XGB and LGBM) types of ensemble learning.

In particular, RFC uses Decision Trees (DTs) as a base, with
its significant difference from a plain DT being that each node
is split using the best among a subset of predictors randomly
chosen at that node. Moreover, RFC uses only a sample of
the features each time during the bagging procedure, which
reduces the generated variance, while RFC can also highlight
the importance of the features in terms of their predictive
power [16], thus resulting in high performance in classification
tasks [25]. On the other hand, AdaBoost is a powerful boosting
algorithm that also uses DTs at its base. AdaBoost uses the
mistakes of the previous models by increasing the weight of
the misclassified data points and finally turning weak models
into strong models [16]. XGBoost and LGBM, known as
Gradient Boosting Decision Trees (GBDTs) [26], directly
learn from the models’ prediction mistakes, instead of updating
the weights of data points. XGBoost uses gradient descent to
minimise the error of the DT that operate on its base and also
regularisation methods such as LASSO (L1) and Ridge (L2)
to reduce over-fitting and improve performance [24]. Finally,
LGBM also use DT on its base. However, in contrast to
XGBoost, LGBM splits the trees leaf-wise rather than depth
or level-wise, which leads to better results as more loss is
minimised on each leaf [23].

Overall, the notion of ensemble learning and the aforemen-
tioned representative algorithms are good candidates for our
problem, as they can lower the bias and the variance during
training, which is particularly important in cases of relatively
small datasets, similar to the ones used in this work.

IV. EVALUATION

A. Experimental Setup

Following the procedure described in Section III-A, we
deployed a Dionaea honeypot for a month and collected a
dataset that consists of 345 security incidents that occurred
on the deployed honeypot, with each security incident con-
sidered as a sample. Subsequently, the 18 features listed in
Section III-B were extracted and used as input to the ML
algorithms described in Section III-C.

To build our ML models, we performed several preprocess-
ing steps. First, we used the train/test split method from sklearn
to split our dataset. Due to the relative small size of the dataset,
we split it with a ratio of 90% into the train data and 10%
into the test data [27], in order not to lose valuable training
samples. The samples were shuffled and also stratified across
the class data so that the test split maintained the proportion
of both classes.

To evaluate the performance of our models, we used cross-
validation and, more specifically, stratified k-fold that ensures

that the dataset class proportion is preserved on every split,
which can result in low bias and variance rate [28]. During
the stratified k-fold, we used the random search technique [29]
to find the best parameters for our models using the train set.
Afterwards, the models were trained on the same set and tested
on the separate holdout test set, to evaluate their performance
on previously unseen data.

Finally, to account for values away from the normal distri-
bution (since most ML algorithms perform better when feature
values are in a specific range), we used the robust scaler
method [30]. We also used the SMOTE (Synthetic Minority
Over-sampling Technique) method [31] and, more specifically,
the Adaptive Synthetic Sampling approach (ADASYN) [32] to
deal with unbalanced classes.

To build the ground truth and categorise an extracted IP
address as origin of either highly-abusive or less-abusive
behaviour, we utilised two relevant resources: the AbuseIPDB6

and the VirusTotal7 projects. In particular, the extracted IP
addresses were queried against the database of AbuseIPDB
which returns a result that includes a confidence of abuse
rating (scaled 0-100) indicating, based on user reports, the
confidence on whether the IP address is involved in malicious
activity. A rating of 100 means that we are certain an IP
address belongs to a threat actor, while a rating of 0 means
that they were unreported or undetected by other parties. We
set the threshold to 75, i.e, IP addresses with confidence of
abuse rating lower than 75 were categorised as less-abusive,
while those with confidence equal or greater than 75 were
categorised as highly-abusive. Moreover, we also considered
an additional ground truth resource in order to increase the ro-
bustness of our evaluation. To this end, we scanned the test set
IP addresses using VirusTotal to obtain information about their
behaviour; if the IP address was found abusive in VirusTotal,
we considered it as highly-abusive. In this case, the evaluation
was performed by comparing our experimental results with the
VirusTotal results on the basis of their accuracy.

B. Evaluation Metrics

In this work, threat categorisation is viewed as a binary clas-
sification problem where negative stands for the less-abusive
class and positive for the highly-abusive one. The overall
performance of the four models was measured using [33]: (i)
precision (i.e., the ratio of True Positives (TP) to the sum of
TP and False Positives (FP)), (ii) recall (i.e., the ratio of TP to
the sum of TP and False Negatives (FN)), (ii) the F1-measure
(i.e., the harmonic mean of precision and recall), and (iv) the
Receiver Operator Characteristic (ROC) which depicts on a
plot the relationship between the True Positive (TPR) on the
y-axis and the False Positive Rate (FPR) on the x-axis; for
a numeric representation of this relationship, the Area Under
the Curve (AUC) is calculated.

6https://www.abuseipdb.com/
7https://www.virustotal.com/

TABLE II
RESULTS OF THE EVALUATION EXPERIMENTS

Precision Recall F1 score AUC
RFC 0.59 0.63 0.59 0.82
ADA 0.66 0.78 0.60 0.78

LGBM 0.69 0.80 0.70 0.91
XGB 0.67 0.78 0.67 0.90

Results after threshold adjustment
RFC 0.70 0.84 0.69 0.82
ADA 0.66 0.78 0.60 0.78

LGBM 0.69 0.83 0.67 0.91
XGB 0.71 0.81 0.73 0.90

C. Results

Table II presents the evaluation results on our dataset for
the four ML models. Our main goal is to correctly identify as
many highly-abusive attacks as possible (high recall) and avoid
wrongly categorising highly-abusive attacks as less-abusive
(low false negative rate).

First, we consider the default probability threshold for
binary classification (i.e., 0.5). In this case, the RFC algo-
rithm achieved 59% precision and 63% recall, which reveal a
relative significant rate of false negatives. The other algorithms
achieved higher recall scores, but with room for improvement.

To this end, we applied a threshold adjustment technique
[34] to adjust the predefined threshold of 0.5 and lower
the false negative predictions of the positive class. The new
decision thresholds after the adjustment were 0.32 for RFC,
0.58 for ADA, 0.38 for LGBM, and 0.65 for XGB. After
threshold adjustment, all ensemble algorithms achieved better
results for all metrics compared to the results before threshold
adjustment, except for ADA that remained the same.

More specifically, the results show that our models achieved
a relatively high recall, where RFC and LGBM had the best
scores (84% and 83%, respectively). ADA achieved the same
results as before, which is not unexpected given the minor
adjustment in its threshold. One important observation is that
while we still classified as highly-abusive some samples that
are in fact less-abusive (relative low TN and high FP), this
was something that we could tolerate, given that we had a
high recall which is our main goal. The F1 scores were not so
high, but acceptable, showing a good balance between recall
and precision on the test set.

Even though CTI is extracted from the original security in-
cidents, we do not have information about the severity of these
incidents, and all of them are considered of equal importance,
which, in most occasions, is not the case. By utilising the
ML models we are able to classify these incidents according
to their severity (i.e., abusiveness), which offers additional
information about the attack. Notably, ADA predicted 19
sessions as highly-abusive, RFC 15, LGBM 16, and XGB 11.
Three of the models had 0 FN, except for XGB that had 1,
which means that all highly-abusive sessions were correctly
classified as such by our models.

The AUC score shows how well an algorithm can recognise
the classes given a specific threshold. More specifically, it

TABLE III
RESULTS EVALUATION WITH VIRUSTOTAL

Higly-abusive Less-abusive Accuracy with VT
ADA 11 (31.43%) 24 (68.57%) 80.00%
RFC 15 (42.86%) 20 (57.14%) 85.71%
LGBM 17 (48.57%) 18 (51.43%) 85.71%
XGB 17 (48.57%) 18 (51.43%) 85.71%
VirusTotal 12 (34.28%) 23 (65.71%)

TABLE IV
MOST COMMON ATTACKS PER CATEGORY

Attack Less-abusive Highly-abusive
mssqld 76 2
Blackhole 20 145
upnpd 0 8
smbd 0 6
http (bruteforce) 15 0

represents the relationship between TPR (i.e. abusive predicted
as highly-abusive) and FPR (i.e. less-abusive predicted as
highly-abusive) in different thresholds where higher TPR and
lower FPR result in better scores. LGBM and XGB had the
best AUC scores (91% and 90%, respectively).

It should also be added that we also implemented the
stacking technique, but there was no improvement compared
to the boosting and bagging methods that we studied (results
not shown due to space limitations).

Next, we evaluate our results by comparing them with the
results of VirusTotal project for the test set (IP addresses)
in terms of level of abuse. The results (Table III) show that
three of our models achieve similar results to Virus Total by
85.71%, with ADA being less similar than the other three
models, achieving accuracy of 80%. This shows that our
models (particularly RFC, XGB, LGBM) have good predictive
capabilities, in terms of the abusive behaviour of an IP address.

Table IV lists the most common attacks per category. With
regard to the less-abusive IPs, the most common attacks are
SQL Injections (mssqld), DoS (Blackhole), and Bruteforce
(http bruteforce); such Bruteforce attacks were performed
using XML-RPC requests and have been identified in logs
by the entries that include the POST /xmlrpc.php HTTP/1.0
HTTP Request. Concerning the highly-abusive IPs, the most
common attacks are DoS (Blackhole, upnpd) and malware
uploads (smbd). An important observation is that DoS attacks
are included in the most common attacks in both categories;
this could be due to easiness of performing such attacks as they
do not require much sophistication and can be performed from
both advanced or less advanced attackers. The observations
stemming from Table IV could facilitate an organisation to
conduct threat modelling based on their assets and employ
proper security measures, while the knowledge of which at-
tacks are usually related to each category could be considered
an important advantage during an IR procedure.

Overall, the different preprocessing techniques we applied,
along with the fine tuning of the selected algorithms with the
random search technique, allowed us to achieve relatively good
results. Although the relatively small dataset that was used did

not prevent the models from achieving good results, we argue
that bigger datasets can lead to more robust results without
the need of the extensive preprocessing used in our work. In
this line, our dataset is constantly updated with new threat
information, that will improve our models in terms of their
predictive capabilities.

V. CONCLUSIONS

In this work, we utilised ensemble ML methods and a
honeypot deployed on the cloud to distinguish the security
incidents that were identified in the honeypot (i.e., Dionaea).
The RFC and LGBM models achieved the best results re-
garding the recall metric (84%, 83%) while LGBM achieved
the best AUC results (91%) following by XGB (90%). The
results showed that ensemble ML models are highly effective
concerning the categorisation of security incidents, based on
their level of abusive behaviour. The dataset that we utilise
is constantly updated, thus enabling the continuous update of
the generated CTI and increasing the amount of the extracted
features. Therefore, as a future work we plan to add more
observations as input to our ML algorithms, while also imple-
ment more advanced methods such as the utilisation of deep
neural networks. Finally, we plan to deploy more honeypots
as well as VMs which will provide various web pages and
web applications in order to gather different data in terms of
diversity and intelligence; we consider that the T-POT platform
is an appropriate tool to this end.

ACKNOWLEDGMENT

This work was supported by the FORESIGHT (H2020-
833673) and ECHO (H2020-830943) projects, funded by the
European Commission.

REFERENCES

[1] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[2] S. Kumar, B. Janet, and R. Eswari, “Multi platform honeypot for
generation of cyber threat intelligence,” in 2019 IEEE 9th International
Conference on Advanced Computing (IACC). IEEE, 2019, pp. 25–29.

[3] Z. Zhang, H. Esaki, and H. Ochiai, “Unveiling malicious activities in
lan with honeypot,” in 2019 4th International Conference on Information
Technology (InCIT). IEEE, 2019, pp. 179–183.

[4] A. Kyriakou and N. Sklavos, “Container-based honeypot deployment
for the analysis of malicious activity,” in 2018 Global Information
Infrastructure and Networking Symposium (GIIS). IEEE, 2018, pp.
1–4.

[5] S. Bistarelli, E. Bosimini, and F. Santini, “A report on the security of
home connections with iot and docker honeypots.” in ITASEC, 2020,
pp. 60–70.

[6] B. D. Le, G. Wang, M. Nasim, and A. Babar, “Gathering cyber threat
intelligence from twitter using novelty classification,” arXiv preprint
arXiv:1907.01755, 2019.

[7] J. Zhao, Q. Yan, J. Li, M. Shao, Z. He, and B. Li, “Timiner: Automati-
cally extracting and analyzing categorized cyber threat intelligence from
social data,” Computers & Security, vol. 95, p. 101867, 2020.

[8] A. S. Gautam, Y. Gahlot, and P. Kamat, “Hacker forum exploit and
classification for proactive cyber threat intelligence,” in International
Conference on Inventive Computation Technologies. Springer, 2019,
pp. 279–285.

[9] V. Mavroeidis and A. Jøsang, “Data-driven threat hunting using sysmon,”
in Proceedings of the 2nd International Conference on Cryptography,
Security and Privacy, 2018, pp. 82–88.

[10] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, and I. Kom-
patsiaris, “Detection of advanced web bots by combining web logs with
mouse behavioural biometrics,” Digital Threats: Research and Practice,
vol. 2, no. 3, pp. 1–26, 2021.

[11] J. Jabez and B. Muthukumar, “Intrusion detection system (ids): Anomaly
detection using outlier detection approach,” Procedia Computer Science,
vol. 48, pp. 338–346, 2015.

[12] J. Song, H. Takakura, Y. Okabe, and K. Nakao, “Toward a more practical
unsupervised anomaly detection system,” Information Sciences, vol. 231,
pp. 4–14, 2013.

[13] Q. Cao, Y. Qiao, and Z. Lyu, “Machine learning to detect anomalies
in web log analysis,” in 2017 3rd IEEE International Conference on
Computer and Communications (ICCC). IEEE, 2017, pp. 519–523.

[14] L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy
of a random vector,” Problemy Peredachi Informatsii, vol. 23, no. 2, pp.
9–16, 1987.

[15] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258,
2020.

[16] N. Lower and F. Zhan, “A study of ensemble methods for cyber security,”
in 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, 2020, pp. 1001–1009.

[17] N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M. Lahza,
“Improving performance of intrusion detection system using ensemble
methods and feature selection,” in Proceedings of the Australasian
computer science week multiconference, 2018, pp. 1–6.

[18] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[19] P. Bartlett, Y. Freund, W. S. Lee, and R. E. Schapire, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
The annals of statistics, vol. 26, no. 5, pp. 1651–1686, 1998.

[20] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[21] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[22] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[23] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[24] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[25] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[26] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[28] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Ijcai, vol. 14, no. 2. Montreal,
Canada, 1995, pp. 1137–1145.

[29] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

[30] M. M. Ahsan, M. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique,
“Effect of data scaling methods on machine learning algorithms and
model performance,” Technologies, vol. 9, no. 3, p. 52, 2021.

[31] S. Mishra, “Handling imbalanced data: Smote vs. random undersam-
pling,” Int. Res. J. Eng. Technol, vol. 4, no. 8, pp. 317–320, 2017.

[32] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, 2008, pp. 1322–1328.

[33] L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck, “In-depth
comparative evaluation of supervised machine learning approaches for
detection of cybersecurity threats,” in 4th International Conference on
Internet of Things, Big Data and Security (IoTBDS), 2019, pp. 125–136.

[34] G. Collell, D. Prelec, and K. Patil, “Reviving threshold-moving: a simple
plug-in bagging ensemble for binary and multiclass imbalanced data,”
arXiv preprint arXiv:1606.08698, 2016.

