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ABSTRACT

Web bots are vital for the web as they can be used to automate
several actions, some of which would have otherwise been impos-
sible or very time consuming. These actions can be benign, such
as website testing and web indexing, or malicious, such as unau-
thorised content scraping, scalping, vulnerability scanning, and
more. To detect malicious web bots, recent approaches examine
the visitors’ fingerprint and behaviour. For the latter, several values
(i.e., features) are usually extracted from visitors” web logs and used
as input to train machine learning models. In this research we show
that web bots can use recent advances in machine learning, and,
more specifically, Reinforcement Learning (RL), to effectively evade
behaviour-based detection techniques. To evaluate these evasive
bots, we examine (i) how well they can evade a pre-trained bot de-
tection framework, (ii) how well they can still evade detection after
the detection framework is re-trained on new behaviours generated
from the evasive web bots, and (iii) how bots perform if re-trained
again on the re-trained detection framework. We show that web
bots can repeatedly evade detection and adapt to the re-trained
detection framework to showcase the importance of considering
such types of bots when designing web bot detection frameworks.

CCS CONCEPTS

« Computing methodologies — Reinforcement learning; Su-
pervised learning by classification; - Information systems —
Web log analysis.
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1 INTRODUCTION

Web bots allow the automation of several vital tasks such as web
indexing and website testing, which would have otherwise been
very time consuming or impossible. Some tasks require web bots
to visit web servers repeatedly, resulting in web bots generating a
huge amount of web traffic; based on Imperva’s bad bot report [19],
web bots accounted for 40.8% of the total traffic that they monitored.
Web bots are also used by malicious actors to facilitate attacks [15].
Examples of malicious actions include unauthorised content and
price scraping, buying all the available stock of specific limited
products to resell at higher price (i.e., scalper bots), vulnerability
scanning, brute forcing passwords and credit card numbers, and
generating accounts to spam messages or amplify propaganda.

Thus, web servers employ web bot detection techniques, with
the most common ones in the last years being based on CAPTCHA
(Completely Automated Public Turing test to tell Computers and
Humans Apart) challenges [35]. However, several approaches have
been proposed to bypass various types of CAPTCHAs proposed
over the years. Such techniques utilise machine learning [10] along
with services such as image reverse image and image tagging [30]
to solve CAPTCHA’s visual challenges, or speech-to-text engines
to solve the audio challenge accompanying CAPTCHAs [7].

To this end, well-known companies that offer web bot detection
products [2, 12, 20] as well the latest version of Google’s CAPTCHA
challenge! (reCAPTCHA version 3) examine visitors’ fingerprint
and behaviour [3] to decide whether a visitor is a bot. Concerning
the fingerprint, detection mechanisms collect hardware and soft-
ware information about the visitors’ devices to identify whether
they are automated scripts or real browsers. Examples of such tech-
niques are plugin enumeration, WebGL fingerprinting, examination
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of unique to browser automation software strings in JavaScript vari-
ables [6, 22], extraction of browser low level properties such as the
instruction-set architecture and the memory allocator used [27].

Even though detecting web bots based on their fingerprint has
proven to be very effective against detecting different types of web
bots, recent advances in browsing automation software can be used
to bypass such techniques. For example, browsing automation soft-
ware can be specially configured [6, 34] and there are also plugins
that can be added to increase the bots’ evasiveness, such as the Pup-
peteer stealth plugin? that has been designed to make the Puppeteer
browsing automation software® harder to detect. Additionally, com-
mon browsers can be utilised instead of browsing automation soft-
ware so as to exhibit a fingerprint indistinguishable from browsers
[3]. Thus, to effectively detect web bots, current research examines,
besides their fingerprint, the browsing behaviour of the visitors
using machine learning based techniques [15, 17, 21, 24].

In this work, we investigate whether advanced web bot that
utilise Reinforcement Learning (RL) can evade state-of-the-art web
bot detection approaches that analyse web logs. Even though RL
has shown very promising results in different scenarios with similar
characteristics as the web bot detection/evasion problem, to the best
of our knowledge this is the first work that addresses this research
question. Additionally, this work considers a scenario closer to
a real-world setting, where both the evasive web bots and the
web bot detection framework update their methods based on their
adversaries’ actions; the web bots continuously try to update their
behaviour to evade detection, whereas the detection framework
updates its models using the evasive behaviours generated by web
bots.

The main contributions of this work are:

o The proposal of a novel way to create web bots that use RL
to evade detection based on the web logs they generate

e The proposal of a novel RL environment for the web bot
detection/evasion problem

e A more realistic evaluation process, where the web bots con-
tinuously update their behaviour to evade detection while
the detection framework updates its detection models based
on the new behaviours generated by the web bots

Overall, this research aims to showcase the possibility of web bots
using RL to evade detection effectively. Thus, in this research we
aim to show the importance of considering this type of malicious
web bots when designing detection frameworks.

The rest of this paper is structured as follows: Section 2 outlines
the literature on the behaviour-based web bot detection and de-
tect evasion techniques. Section 3 presents the main RL concepts
and how they map to the web bot detection/evasion problem. Sec-
tion 4 presents the details of the RL environment and the novel
evasive web bots that use RL. Section 5 describes the evaluation
methodology and the experimental setup, while Section 6 discusses
the results. Finally, Section 7 concludes our work and outlines the
future work.
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2 RELATED WORK

The web bot detection problem aims to either distinguish web bots
from human visitors [8, 11, 29], or to categorise bots based on their
functionality [13], purpose [38], or complexity [15, 17]. Next, we
initially present the techniques proposed in literature for detecting
web bots based on their behaviour (Section 2.1), and then we outline
techniques proposed for evading detection (Section 2.2).

2.1 Behaviour-Based Web Bot Detection

Behaviour-based web bot detection techniques commonly examine
the web logs of the visitors. Web logs are grouped into sessions and,
based on these sessions, several measurable values (i.e., features) are
extracted and used to train machine learning models. The trained
models use the web logs generated by new visitors to classify them
as bots or humans.

Web logs are typically split per user either by using the PHP
session ID [16] or, alternatively, based on a combination of the
visitor’s IP and user agent. Based on those, a unique identifier
per visitor is created [14, 26, 29]. Then, for each user, one or more
sessions are generated based on a timeout value (i.e., when a specific
amount of time have passed and no new requests with the same
session identifier have been performed) [14, 15, 26, 29]. Finally, only
sessions with a number of requests greater than a threshold can be
used, to make sure that the sessions have enough data [26].

After splitting the logs into sessions, the feature extraction pro-
cess takes place, where several measurable values (i.e., features)
are extracted from the web logs. Such features include the total
number of requests and the HTTP type of requests (e.g., GET, POST,
etc.) [29, 38], the HTTP response code type (e.g., 3xx, 4xx) [8, 38],
the percentage of requests to specific file types (e.g., image, CSS,
JavaScript) [26], and whether the requests are consecutive (i.e.,
requests whose URL contains the previously requested URL as a
subpart) [38]. Additionally, time-related features, such as session
time, browsing speed, inter-request times, etc. [38], have also been
considered. Finally, features that capture the semantics of the con-
tent of the requested resources, such as the total topics of the pages
that the web bot visited and the page similarity and variance, are
used [21].

The extracted features are used as input to machine learning
algorithms to generate detection models that classify new visitors as
bots or humans. For that, usually classification [8, 24] or clustering
[25, 32] machine learning algorithms are used. Additionally, the
detection process can be either offline after the end of a session [32],
or online by performing an estimation during the session [11, 24].

For classification, algorithms that have been used include Sup-
port Vector Machines (SVM) [1, 15, 17, 24, 31], Random Forest (RF)
[15, 17, 29], MultiLayer Perceptron (MLP) [8, 15, 17, 24, 31], Ad-
aboost [15, 17, 29], k-Nearest Neighbour (kNN) [31], C4.5 [29, 31],
Naive Bayes [29], and other Bayesian approaches [33]. An ensemble
classifier over different classifiers has also been used [15, 29].

The clustering algorithms that have been used include Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [37],
K-means [24, 25], Granded Possibilistic ¢ Means (GPCM) fuzzy clus-
tering [24, 25], unsupervised neural network learning, specifically
the Self-Organizing Map (SOM) and the Modified Adaptive Reso-
nance Theory 2 (Modified ART2) [32], SOM in combination with
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Fuzzy Rough Set (FRS) theory [14], Markov Clustering (MCL) in
combination with FRS theory [38], and Hierarchical Particle Swarm
Optimization (HPSO), a clustering approach for outlier detection
based on Particle Swarm Optimization (PSO) [4].

Even though most approaches examine the visitors’ web logs,
there have also been a few approaches proposed in recent years
that examine visitors’ mouse movements instead. Such approaches
extract high level actions from mouse movements, such as click,
point-and-click, and drag-and-drop, and then extract features from
each action, such as duration, distance, displacement, etc. which
are used to train machine learning algorithms [11]. Other recent
approaches process the mouse trajectories as images and use them
as input to Convolutional Neural Networks (CNNs) [15, 36].

2.2 Behaviour-Based Web Bot Detection Evasion

Web bots proposed in literature commonly use heuristics and sta-
tistical distributions to exhibit behaviours that can evade detection
based on either the web logs that they generate [9, 18], or their
mouse movements [1, 15]. Additionally, more advanced machine
learning techniques have been proposed for evading detection based
on the mouse movements that bots generate, such as the use of RL
to generate mouse movements that can bypass Google reCAPTCHA
v3 [3], and the use of Generative Adversarial Networks (GANs) to
generate humanlike mouse movements for browsing the web [16].
Finally, GANs have also been used to generate synthetic swipe and
accelerometer data for the case of mobile web bots [1].

In this work, we leverage the exceptional performance of RL
in different domains (including defeating professional players in
games, such as the board game Go [28]), to propose a novel way of
creating web bots that can evade detection based on the logs that
they generate. Additionally, we use a novel and realistic dynamic
environment, where both parties (i.e., the evasive web bots, and
the detection framework) update their methods to achieve their
goals; the web bots continuously try to find behaviours to evade
detection, whereas, the detection framework re-trains its models to
detect the new evasive web bots based on the logs they generate.

3 RL MAIN CONCEPTS FOR THE WEB BOT
DETECTION/EVASION PROBLEM

In RL, the agent performs actions in an environment in order to
maximise the notion of cumulative reward. There are five main “con-
cepts” in RL that should be mapped to the web bot detection/evasion
problem: agent, environment, action, state, and reward. Following
an intuitive approach, we map those concepts to the web bot detec-
tion/evasion problem, as presented in Figure 1.

Specifically, the web bots repeatedly visit the web server and
download content following different behaviours, while also exam-
ining whether they appear to have been detected. Based on whether
they have been detected or not, web bots update their browsing be-
haviour. In Table 1 we summarise these main RL concepts and how
we instantiated them in the web bot detection/evasion problem.

Furthermore, we assume that web bots can change their finger-
print when being detected, thus starting in a clean-slate every time
(as far as the web server is concerned). This is not an unreasonable
assumption, since advanced web bots may have several unique
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Figure 1: Mapping of the RL concepts to the web bot detection
/evasion problem

fingerprints in their possession allowing them to change their fin-
gerprint and be considered as new visitors by the web server if
needed [19].

4 EVASIVE WEB BOTS USING RL

Web bots can take advantage of RL (which has shown very promis-
ing results in similar domains) to find behaviours that can evade
detection. For that, we initially have to define (i) the appropriate
environment (i.e., the web server with the bot detection framework),
and then model our evasive web bots by defining (ii) the possible
actions that web bots can perform, (iii) the states the web bots can
be in, (iv) the rewards that the web bots will receive, and (v) the
model (i.e., “brain”) of the agent (i.e., the web bot), responsible for
deciding which action to perform at each state.

4.1 Environment

The environment consists of the web server along with the web
bot detection framework. The web server hosts several web pages,
simulating a real one. The detection framework that focuses on
detecting web bots based on their browsing behaviour (i.e., the
pages they visit) follows state-of-the-art approaches that examine
visitors’ web logs [14, 15, 38]. The architecture of the environment
is presented in Figure 2.

| I'Detection framework

|
|
|

@ - Session - Featu!'e |

1 |

|
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|

|
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Classification

|

| Web logs e
Evasive Web |
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Figure 2: Web server and detection framework

The detection framework periodically accesses the web logs of
the web server, and extracts the user sessions from those logs and
the values of the features from each session. In the training period,
the feature vectors are used as input to train classifiers. Then, the
trained classifiers are used to label new visitors as web bots or
humans. Next, we present the details of this process.

4.1.1 Session Extraction. The detection framework initially splits
the web logs into different visitors and extracts the different sessions
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Table 1: RL concepts and instantiation into the web bot detection/evasion problem

RL concept Description

‘Web bot detection/evasion context

Agent The “thing” that senses the environment and performs some actions

Web bot

Environment | The real or simulated “world” that the agent can interact with

Web server and detection framework

direct response to the agent’s actions

Action What an agent can do in its environment Visiting of a website
State Different configurations of the environment that the agent can sense | The web pages that the agent has already visited
Reward A numerical value received by the agent from the environment asa | Value that depends on the web page visited and

whether the web bot is detected or not

for each visitor. To uniquely identify a user, the PHP session ID is
used, while a session ends when more than 30 minutes have passed
and no new requests with its ID have been performed [14, 15].

4.1.2  Feature Extraction. For each session, several measurable val-
ues (i.e., features) are calculated. These features are related to the
method/response code of the HTTP request, the type of file(s) re-
quested, and the browsing behaviour. The features utilised are
presented in Table 2 and include the ones from state-of-the-art web
bot detection methods proposed in literature that are applicable to
our environment [14, 15, 38].

4.1.3 Classification. The extracted feature vectors are used as in-
put to the classifiers. In the training phase, the feature vectors are
used to train the classifiers, while in the testing phase, the trained
classifiers take as input the feature vectors and decide whether the
sessions of those vectors came from bots. The classification module
follows state-of-the-art approaches in the web bot detection domain
[15], and uses an ensemble (i.e., it performs a class probability aver-
aging of all the available classifiers) of four well known classifiers:
SVM, RF, AdaBoost, and MLP Classifier; details of the classifiers
that are employed in this work are presented in Section 5.3.1.

4.2 Actions

The actions that the bots will be able to do should depend on what
features the state-of-the-art web bot detection considers. As dis-
cussed before, these features examine the method/response code
of the HTTP request, the type of file(s) requested, and the brows-
ing behaviour (including the pages visited and the time between
requests) [17].

Thus, the different actions that are considered in this work have
to do with (i) what web pages the bot can visit, and (ii) how much
time it spends on them. Based on that and since web bots try to gen-
erate a behaviour similar to a human one, the proposed advanced
web bots support the following general types of actions:

o Simple download: The web bot downloads only the main web
page content (e.g., the HTML code) and not the additional
files included (e.g., images, CSS, JavaScript, etc.).

o Full download: The web bot downloads the web page con-
tent and any additional files included (e.g., images, CSS,
JavaScript, etc.).

Additionally, before going to the next web page, web bots can
wait some time to simulate a “reading” functionality. We consider
this waiting time to be between two values, the time_min and
time_max. Also, we consider those to be integers indicating the
seconds that web bots will wait, since also the respective features

used by the web bot detection framework round the time in seconds,
as shown in Table 2.

Thus, we end up with a total number of different actions at each
state to be:

total_number_of _actions = N -2 - (dt + 1) (1)

where N is the number of web pages of the web server, the ‘2’
indicates the two modes of downloading (i.e., simple download, and
full download), and dt = time_max — time_min corresponds to the
possible times that the web bot can “wait” on that web page (this is
why we add one to the difference).

From Equation 1 we see that web bots can visit any web page
when being on a specific web page (and not only the ones included
in this web page). If we had allowed web bots to visit web pages
only included in the current page, this would not have reflected a
scenario closer to a real-world setting, where visitors can access
any web page of the server at any time. However, this assumes that
web bots know all the URLs of the web pages of the web server.
Assuming that web bots will repeatedly visit different web pages
of the web server and based on the fact that the URLs of some web
servers can be predicted or extracted using different methods (such
as using search engines to gather relevant URLSs), this is not an
unreasonable assumption.

4.3 States

States are considered as the different configurations of the environ-
ment that the web bot can sense, and, in our case, are calculated
based on the web pages that the bots visit. Each action can result
in changing the current state of the agent (i.e., web bot).

There are two ways to calculate the state in our case: (i) consid-
ering only the first time a web bot visits a specific web page, or (ii)
considering every time a web bot visits a specific web page. The
first approach would limit the intelligence of the agent by omitting
information that has to do with going back and forth to the same
web pages (something that humans usually do). The second case
could result in an infinite number of possible states that the web
bot can be in, since a web bot can visit a web page infinite times.

Thus, in our case we follow the second approach (i.e., considering
every time a web bot visits a specific web page) by adding an upper
limit in how many times we consider visits to the same web page.
After that, we ignore any additional visits to this page, which could
have resulted in an infinite number of possible states.

Additionally, a web bot can simply visit a web page (which is
common for simple scripts), or download the additional sources
included in this page (such as JavaScript files, CSS files, images,
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Table 2: Features extracted from each session

Id  Feature Short description and literature

1 Total requests Total number of HTTP requests issued during the session [4, 17, 29, 31, 32, 38]

2 Total session Bytes Sum of all requested pages’ size (in Bytes) in a session [4, 8, 17, 24, 32, 38]

3 HTTP GET requests Total number of HTTP GET requests issued during the session [5, 8, 17, 29, 38]

4 HTTP POST requests Total number of HTTP POST requests issued during the session [8, 17, 29, 38]

5 HTTP HEAD requests Total number of HTTP HEAD requests issued during the session [8, 17, 24, 29, 31, 32, 38]

6 % HTTP 3xx requests Percentage of HTTP requests that led to an HTTP 3xx code response [5, 8, 17, 38]

7 % HTTP 4xx requests Percentage of HTTP requests that led to an HTTP 4xx code response [5, 8, 17, 24, 31, 32, 38]

8 % image requests Percentage of HTTP requests that requested an image. This feature searches for all known image

formats’ ending [17, 26, 29]

9 % css file request Percentage of HTTP requests that requested a css file [17, 26]

10 % js requests Percentage of HTTP requests that requested a JavaScript file [17, 26]

11 ~ HTML-to-image ratio The number of the requested HTML files divided by the number of requested image files in a

session [17, 31, 38]

12 Depth SD Standard deviation of requested pages’ depth (i.e. number of ’/’ in URL path) [17, 31, 32, 38]

13 Max requests per page Maximum number of requests to the same page in a session [17]

14  Average requests per page Average number of requests per page in a session [17]

15  Max number of consecutive Maximum number of HTTP requested URLs that contain the previously requested URL as a
sequential HTTP requests subpart page [17, 38]

16 % of consecutive sequential Percentage of HTTP requested URLs that contain the previously requested URL as a subpart [17,
HTTP requests 31, 32]

17 Session time Total time (in seconds) between the first and the last HT TP request of the session [4, 5, 17, 24, 29, 38]

18  Browsing speed Ratio of the total number of requested pages over time (in seconds) [5, 17]

19  SD of inter-request times Standard deviation of time between successive requests [5, 17]

etc.). In the case of human visitors (i.e., where a browser is used),
the latter (i.e., downloading additional sources included in the web
page) is usually done only in the first time each file is encountered
and the downloaded files are cached on the browser.

Thus, in our setup we consider two separate states for each web
page based on the way the web page can be visited: (i) only the
web page is downloaded, and (ii) the web page is downloaded along
with the additional files included in that page.

We define the state vector for a web server with N web pages as:

state_vector = [#pagey, ..., #pagen—1, #pagen, ..., #pagean—1]
@
where #page; is an integer number indicating how many times the
agent has visited a specific web page page;, getting values between
0 and M, with M being the upper limit for the number of times

that we consider that the web bot can visit the specific web page.

Additionally, web pages whose index differs by N (i.e., page; and
pagen+i, 0 < i < N — 1) correspond to the same web page, with
the one with the low index indicating that only the web page is
downloaded while the one with the high index indicating that,
besides the web page, the additional files included in the web page
(e.g., JavaScript, CSS, etc.) are also downloaded.

4.4 Rewards

Web bots can be trained to maximise a notion of cumulative reward,
received by the environment as a direct response to their actions.
The selection of rewards is very important, since the rewards will
guide the web bot in achieving the wanted behaviour. For example,

simply giving positive rewards to the web bot by not being detected
might result in the web bot staying in the same web page, as long
as it remains undetected.

In our case, the target goal of the web bots is twofold: (i) to
generate a behaviour that evades detection, and (ii) to explore
the web server and visit new web pages. Thus, we consider the
following types of rewards:

o New web page reward: Web bot visits a new web page and
does not get detected

o New state reward: Web bot changes state (but does not visit
a web page that has not visited before) and does not get
detected. As discussed before, a web bot can visit the same
web page up to M times resulting in another state each time

o Detection reward: Web bot tries to download any web page
and gets detected

o Detection evasion reward: The web bot manages to visit M
web pages and not get detected.

Based on the above, the detection reward should be the lowest,
motivating the bot to select the actions that will allow it to remain
undetected. This reward can also be negative, resulting in a “penal-
ising” characteristic. The new web page reward should be a positive
one, to motivate the web bot to navigate the web server and visit
different web pages. The new state reward can also be a positive
one since the web bot might have to re-visit a specific web page to
evade detection since this is also something that humans do. But
it should be lower than the new web page reward, since otherwise
web bots might prefer to stay at the same page as long as they do
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not get detected. Finally, the detection evasion reward should be the
highest one, motivating web bots to follow specific behaviours that
will allow it to evade detection.

4.5 Agent

After having defined the environment, actions, states, and rewards,
we have to choose the algorithm that the agents (i.e., web bots)
should follow to learn what action they should perform at each
state.

We decided to base our model to the well-known Q-learning
algorithm. Q-learning generates a matrix containing all possible
states and the respective actions and a value for each state-action
pair representing how useful a specific action is on a specific state
based on the future reward that the agent will receive. This is called
the action-value function, Q(s, a). Using Q-learning, the web bot
can find a policy (i.e., the way it makes decisions for what actions
to perform at each state) to follow that maximises its future reward.

The Q(s, a) is initialised randomly at the beginning. Then, for
each step t the agent takes an action a; on a state s; resulting in
changing its state to s;4+1 and receiving a reward r;. Based on this
transition, the Q(s, a) is updated using the following equation.

Q™Y (s, ar) = Q(sp, ap)+a- | re+y-max Q(sp11,a) —Q(st, ar) | (3)

where the a (i.e., learning rate) determines to what extent the newly
acquired information overrides old information, and the y (i.e.,
discount factor) determines the importance of future rewards. In
this, the Temporal Difference (TD) learning approach is followed,
where the agent tries an action (a;) in a particular state (s;), and
evaluates its consequences in terms of the immediate reward and
its estimate of the value of future rewards it will receive by moving
to the next state, sz41.

As discussed above, to calculate Q(s, a), the agent (i.e., web bot)
interacts with the environment and updates Q(s, a) based on the
states it has been in and the actions it performs. However, by follow-
ing only the most promising actions in a state, the agent chooses
only the actions that give the highest immediate reward, which
might be far less than the future reward that it could have received
by performing different actions (which are currently unknown).

Thus, the agent should find a balance between “exploitation”
(ie., performing the most promising action), and “exploration” (i.e
taking a random action, hoping for a better future reward). This is
called the “explore-exploit” dilemma, where the agent has to decide
when to explore and when to exploit (i.e., take the best action based
on the current knowledge of the environment). In principle, the
agent could have always performed random actions to find the best
behaviour to follow, but this would take a lot of time due to the
agent following paths that are not very promising.

To calculate the Q(s, a), our agent uses the Epsilon-Greedy ap-
proach, where it performs a random action or the most “promising”
action on a current state based on a probability €. Based on this
probability, the agent either (i) follows the most promising states
(in regards of the future rewards that it will receive), or (ii) performs
random actions that may result in states with better future rewards.

To account for the fact that by following the Q-learning algo-
rithm as presented above, the agent might take a lot of time to train
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(since there is a large number of actions the agent can perform, as
shown in Equation 1), in this work we used the Deep Q-Network
(DQN) algorithm proposed by DeepMind [23]. DON uses a Deep
Neural Network (DNN) to calculate the equivalent of the Q(s, a)
used in Q-learning that allows us to train the web bots faster. Thus,
instead of calculating the Q(s, a), we calculate an approximation
using DNNs.

Specifically, in DQN, we approximate the Q(s, a) by considering
a network that takes as input the current state vector and have
multiple output nodes, each one representing the value for each
different action (i.e., the output layer of the neural network has the
same size as the number of possible actions). Additionally, we use
the experience replay technique, where we store all of the agent’s
experiences and then randomly sample from these experiences (i.e.,
get a random minibatch of the transitions) and use the samples to
perform a gradient descent to train the DQN.

As it is evident, the DQN architecture depends on the number
of states (which depends on the web pages considered, as shown
in Equation 2), and the total number of actions (which depends on
the web pages and the waiting time, as shown in Equation 1). Since
these depend on the experimental setup, the architecture of the
DON is presented in Section 5.3.

5 EVALUATION

To assess the effectiveness of the web bots that use RL to evade
detection, we consider the case of scraping web bots that continu-
ously visit a web server to harvest its content. The web server uses
a web bot detection framework that examines the visitors web logs
to identify and block bot visitors.

5.1 Evaluation Methodology

To simulate a more realistic scenario (where both the evasive web
bots and the detection framework continuously update their tech-
niques to achieve their goals), the evaluation takes place in two
phases. In the first phase, we assume that the detection framework
knows nothing about the web bots that use RL, while in the second
the detection framework is trained on the behaviours of those bots.

In the first phase of the experiments, we used a dataset on the
web bot detection domain [15], which includes both human and
bot sessions, with the latter being generated from bots that use
heuristics to evade detection. We opted to do that, to see how the
web bots using RL can be trained to evade a web bot detection
framework that was trained on different types of web bots.

In the second phase, we use data collected during the first phase
from the web bots that used RL and successfully evaded detection
to re-train the detection framework and evaluate how well these
web bots can still evade detection. Additionally, we examine the
case of web bots re-training their models to the re-trained detection
framework. We argue that this setup simulates a scenario closer
to a real-world setting, where both the defender (i.e., the web bot
detection framework) and the attacker (i.e., the evasive web bots)
continuously update their models.

Moreover, since in a realistic scenario we want to detect web
bots as soon as possible, the detection framework examines the
behaviour of the web bots per-request, and uses different classi-
fication models for each number of requests considered. Thus, to
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train the detection framework, we performed an iterative process
where we initially considered only the first request in each session
and gradually increased the number of requests considered. When
a session reaches the maximum number of requests available, we
stop increasing the number of requests considered for that session.

In both phases of the experiments, we performed the same train-
test split (with about 70% of the data considered as training and
the rest as testing) on the visitors when evaluating the detection
framework (i.e., we split the data based on the visitors to group
multiple sessions from the same visitor in the same set). Addition-
ally, at each request considered we performed a grid search over
several possible values of hyperparameters on the (current) train-
ing set and select the best performing ones using a 2-fold cross
validation. Thus, each classifier uses a unique set of parameters for
each number of requests considered. This increases the training
time considerably but usually increases the performance.

Since in RL the agents (in our case the web bots) can be trained
indefinitely, we evaluated them at different training times (i.e., at
different numbers of requests performed cumulatively by all web
bots). We opted to do that because when a bot is detected, it is
blocked and will not be able to revisit the web server (at least
temporarily). Thus, there is a trade-off between how much training
the web bots should do (in regards to the bots required and the
time) and the evasiveness of the behaviour generated.

Finally, besides the web bots that use RL to evade detection,
we also tested other types of web bots that use heuristics. We did
that for comparison purposes and because of different approaches
proposed in literature on evasive web bots that also use heuristics
to evade detection [9, 18]. The details of the configurations of the
web bots considered are presented in Section 5.3.3.

5.2 Dataset

To evaluate our web bots, we used the web server and dataset from
the work of [15]. The web server used in [15] hosted a total of 110
web pages from 11 categories/topics crawled from Wikipedia®.

Using this web server, in [15] a total of 56 human sessions and
56 bot sessions were created. For the human sessions, 28 human
subjects visited the web server (with no strict instructions on how
to read the content or what content to read to simulate a more real-
istic scenario), and created 2 sessions of 15-20 minutes per session
each. To generate the web bot sessions, the authors from [15] used
the advanced web bots that they proposed. These advanced web
bots browsed the web server following hyperlinks in a humanlike
mannet, i.e., they were more likely to follow hyperlinks from within
the same topic (which is also usually done by humans), and also
emulated a “reading” functionality by spending more time, with a
probability, on specific web pages. The time depends on the size of
each web page.

The aforementioned dataset containing these 112 sessions was
used in this work. Out of those, 20 humans and 20 bots (80 session
in total) were used as the training set (~70%), and the rest used for
testing.

4https://www.wikipedia.org/
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5.3 Bot and Environment Configurations

5.3.1  Web Bot Detection. The web bot detection framework fol-
lows state-of-the-art approaches [15] and uses a classifier which
ensembles four well established machine learning classifiers: SVM,
RF, AdaBoost, and MLP. It performs a class probability averaging of
all the above classifiers to increase the effectiveness of the detection
framework.

As discussed before, each classifier is trained on each number of
requests considered, with the total number of ensemble classifiers
being equal to the total number of requests considered. For each
classifier, we re-calculate the set of hyperparameters that achieve
the highest accuracy using grid search with a 2-fold cross validation.
This was done to increase the general effectiveness.

5.3.2 Bots Using Deep RL. As discussed in Section 4, to model the
evasive web bots that use RL, we need to define the possible actions
that web bots can perform, the states the web bots can be in, the
respective rewards, and the model that the agent (i.e., web bot) will
use to decide the actions to perform. The respective configurations
are presented below:

Actions: For the actions, we heuristically selected the time_min =
2 sec and the time_max = 10 sec so that web bots can perform
relatively rapid actions (to scrape the server within a short period of
time), and because we do not want web bots to perform all actions
very fast and end up getting detected.

States: As mentioned in Section 4, a maximum value of the times
that we consider that a web page has been visited is calculated, M.
Thus, we set M = 60, since the maximum number of web pages
downloaded by the humans in our dataset [15].

Rewards: The rewards should motivate the web bot to (i) remain
undetected, and (ii) visit new states. The rewards used were selected
heuristically and are presented in Table 3.

Table 3: Rewards

Action Detected | Reward
New web page reward No +1.0
New state reward No +0.1
Detection reward Yes 0.0
Evasion reward No +100.0

Agent: As discussed in Section 4, we use the DQL algorithm, with
the input layer size being equal to the the number of states, and the
output layer size being equal to the number of possible actions. The
rest of the architecture was heuristically selected and is presented
below.

Table 4: DON architecture

Layer type Output Shape Activation
Flatten 2*N =2*110 = 220 -
Dense 1024 ReLU
Dense 2*N*(dt+1) = 2*110*(8+1) = 1980 Linear
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For the implementation of the environment, the Gym® Python
library was used, that provides standard APIs allowing the commu-
nication between the RL algorithms and the environments. For the
implementation of the DQN, the keras-r12° python library was used,
which implements state-of-the art Deep RL algorithms, seamlessly
integrates with the Keras’ deep learning library, and works out of
the box with OpenAI Gym.

The hyperparameters for the DQN were selected heuristically
and are presented in Table 5. The € was selected to be 0.2, so that the
web bots follow the behaviours that have found to currently be the
more evasive ones, but at the same time, with a smaller probability,
try to find new promising behaviours (i.e., exploring). The y was
set to 0.9 enabling bots to focus on future rewards. For the other
hyperparameters, values that are commonly used were selected.

Table 5: Parameters and configurations

Parameter Value
Warm up steps 100
Learning rate 1073
Epsilon greedy probability () 0.2
Discount factor (y) 0.9

Replay Memory size=50k, window=1

Finally, since we want to evaluate how well the web bots perform
when placed into different web pages as a starting point in testing
(and not choosing the most evasive starting point each time), each
bot performs a random step at the beginning®.

5.3.3  Bots Using Heuristics. In addition to the web bots that use RL
to evade detection, we used some additional types of web bots that
use heuristics to evade detection, mainly for comparison purposes.
These bots are detailed below:

o Simple download bot: Web bot that performs only simple
download actions, i.e. downloads only the web page content
and not the additional files included in the web page (e.g.,
CSS files, JavaScript files, images, etc.)

o Full download bot: Web bot that performs only full download
actions, i.e. downloads the web page content and additional
files included in the web page (e.g., CSS files, JavaScript files,
images, etc.)

e Random bot: Web bot that downloads either only the web
page or the additional files included (i.e., it performs a ran-
dom action from simple download or full download)

o Heuristic bot #1: For the first request it performs a full down-
load, and for the rest of the requests it performs a simple
download. This simulates the behaviour of a browser, where
the additional content of web pages is cached.

e Heuristic bot #2: Similar to the heuristic bot #1, but in this case
the web bot waits for a time between 8~10 seconds (instead
of 2~10). We used that, since humans usually spend more
time on web pages.

Shttps://github.com/openai/gym
Shttps://github.com/taylormcnally/keras-r12
"https://keras.io/

8This was not supported by the keras-rl2 library, so we had to update the source code
of the library
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As discussed before, we assume that all bots start from a random
web page and can visit any web page.

5.4 Evaluation Metrics

To evaluate the web bot detection framework, we calculated the
(balanced) accuracy, and the precision and recall for both classes
(i.e., web bots and humans), all of which are commonly used in the
web bot detection domain [15]. To evaluate how well the web bots
evaded detection, we calculated the evasion percentage (i.e., how
many web bots evaded detection from the total web bots tested).

6 RESULTS

As discussed previously, the evaluation takes place in two phases; in
the first phase the web bots that use RL are trained and evaluated on
an already trained web bot detection framework, and in the second
phase the web bots are evaluated on the detection framework that
was re-trained using the new bot behaviours collected in the first
phase. In the second phase, we evaluate the bots trained in the first
phase and examine the case of web bots also re-training on the
re-trained detection framework. Next, we present the results of the
two evaluation phases.

6.1 First Evaluation Phase

In the first evaluation phase, we initially evaluate the web bot detec-
tion framework that is based on [15] (for completeness purposes),
and then evaluate the evasive web bots against this framework.

6.1.1  Web Bot Detection Performance. The performance of the
detection framework per request considered is shown in Figure 3.
Similarly to [15], the framework can effectively detect web bots; in
addition, since those web bots use heuristics to evade detection, it
is not always easy to preserve a humanlike behaviour for several
requests and, sometimes, specific types or requests may reveal the
nature of web bots.
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Figure 3: Performance of the web bot detection framework

6.1.2  Evasive Web Bots. Next, we present the results of the pro-
posed evasive web bots by testing 1000 bots of each bot type. For the
RL bots, we consider them being initially trained on the pre-trained
web bots detection framework, and then using 1000 additional bots
for testing. The results are presented in Table 6.

Based on the evasion percentage, we see that the heuristic ap-
proaches tested can be easily detected. Only a few web bots, fol-
lowing mainly the simple download approach, evaded detection.
This can be attributed to the fact that the advanced web bots used
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Table 6: Performance of evasive web bots
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training, and (ii) the second case, where web bots re-train to evade
the re-trained web bot detection framework. Table 7 presents the

Bot type Bots / Requests Evasion
(used for training) | percentage
Simple download - 0.7%
Full download - 0.0%
Random - 0.0%
Heuristic #1 - 0.1%
Heuristic #2 - 0.0%
RL bot @5k 850 / 5k 0.0%
RL bot @10k 1,721/ 10k 5.5%
RL bot @15k 2,407 / 15k 10.9%
RL bot @20k 3,202 / 20k 6.3%
RL bot @30k 4,893 / 30k 38.5%
RL bot @40k 5,841 / 40k 37.3%
RL bot @50k 5,331/ 50k 36.2%
RL bot @100k 10,528 / 100k 39.3%
RL bot @200k 17,476 / 200k 22.6%
RL bot @300k 27,175 / 300k 44.2%
RL bot @400k 39,470 / 400k 31.9%
RL bot @500k 41,606 / 500k 38.0%

results of the second evaluation phase.

Table 7: Performance of evasive web bots on the re-trained

detection server

for training the detection framework performed a full download in
their first request so as to exhibit a humanlike behaviour.

On the contrary, web bots using RL were able to find behaviours
that can evade detection. Generally, the more requests considered
in training, the better the evasive web bots perform. However, we
see that in some cases the performance of the web bots decreases.
This can be attributed to web bots trying (“exploring”) new actions
to specific states (instead of following the most promising ones)
which can result in the decrease of the reward values of those states
(resulting in web bots no longer selecting them). However, in the
long run, this does not affect the performance of the web bots.

6.2 Second Evaluation Phase

In the second phase, we evaluate the detection framework re-trained
on the logs generated by a specific type of RL bot from the first
phase, when faced with (i) the same pre-trained RL bot, and (ii)
when the RL bots are re-trained on the (now re-trained) detection
framework. In this phase, we used the RL bots @300k which ap-
peared to be the most evasive ones during the first evaluation phase.
Next, we first present the performance of the re-trained web bot
detection framework and then we re-evaluate the web bots on the
updated framework.

6.2.1 Web Bot Detection Performance. The re-trained web bot de-
tection framework manages to correctly classify the visitors as bots
or humans for every request, achieving a 100% accuracy for all
requests. This indicates that the web bots that use RL generated a
behaviour that, even though evaded detection, can be distinguished
from the human behaviour, when known.

6.2.2 Evasive Web Bots. As discussed above, in the second eval-
uation phase the web bots that use RL are re-evaluated on the
re-trained web bot detection server. For that, we consider two cases:
(i) the first case where the web bots do not perform any additional

Bot type Bots / Requests Evasion
(used for training) | percentage
RL bot @300k (trained before) 3.4%
RL bot @5k 199 / 5k 6.4%
RL bot @10k 218 / 10k 1.9%
RL bot @15k 349 / 15k 6.1%
RL bot @20k 947 / 20k 2.1%
RL bot @30k 935 / 30k 3.2%
RL bot @40k 958 / 40k 1.9%
RL bot @50k 1,270 / 50k 2.6%
RL bot @100k 3,488 / 100k 8.0%
RL bot @200k 7,694 / 200k 10.7%
RL bot @300k 11,875 / 300k 18.0%
RL bot @400k 15,172 / 400k 5.5%
RL bot @500k 18,040 / 500k 8.1%
RL bot @1m 32,476 / 1m 5.2%
RL bot @2m 65,779/ 2m 56.5%

As expected, evading the re-trained web bot detection server is
far more challenging. We see however that some of the pre-trained
web bots from the first evaluation phase manage to evade detection.
This can be attributed to the fact that the web server used only 56
bot sessions randomly selected for training which probably did not
cover all possible behaviours that the web bots can generate.

Additionally, we see that it is much more difficult for web bots to
find evasive behaviours against the re-trained detection framework
and need additional training requests. Still, we see that the web
bots training for the same time as in the first evaluation phase
(i-e., 300k requests) manage to evade detection with an adequate
percentage. Furthermore, we see that training with additional re-
quests considerably increases the evasiveness of the web bots, and
even achieving a higher evasive percentage compared with the first
evaluation phase.

When selecting how much we should train our web bots, we
have to consider that increasing the training time might not be the
optimal approach for the web bot detection domain. For example,
for the case of 2 million requests, ~65.8k bots are required, with
most of them needing a unique fingerprint (to be able to re-visit
with a clean slate after being detected). Considering that the web
bot detection framework might choose to update their detection
models relatively often, selecting less evasive bots that perform
adequately and avoid spending too much time on evading one
specific detection framework might be a better choice.

7 CONCLUSIONS AND FUTURE WORK

This work proposed a novel way for bots to evade detection based
on the web logs they generate through the use of RL. We evaluated
the proposed web bots against (i) a pre-trained detection framework
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that was trained on different types of web bots, and (ii) a web bot
detection framework that was trained on web logs generated from
web bots that use RL. For the latter, we considered two cases, the
case of how well the web bots trained on the pre-trained web bot
detection framework evade detection, and the case of the evasive
web bots re-training on the re-trained detection framework. We
followed this approach to simulate a scenario closer to a real-world
setting, where both the web bots and the web server update their
models to achieve their goals.

The results show that web bots that use RL can adequately evade
detection even when the web server knows or has seen their be-
haviour. This indicates that there is a need for additional detection
mechanisms to detect such web bots that use recent advances in
machine learning to evade detection. Future work includes the ex-
amination of additional methods that use recent advanced machine
learning techniques and can be used by web bots to evade detection,
as well as techniques tailored to detect them.
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