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Abstract Air pollution causes nearly half a million premature deaths each year in
Europe. Despite air quality directives that demand compliance with air pollution
value limits, many urban populations continue being exposed to air pollution levels
that exceed by far the guidelines. Unfortunately, official air quality sensors are
sparse, limiting the accuracy of the provided air quality information. In this chapter,
we explore the possibility of extending the number of air quality measurements
that are fed into existing air quality monitoring systems by exploiting techniques
that estimate air quality based on sky-depicting images. We first describe a com-
prehensive data collection mechanism and the results of an empirical study on the
availability of sky images in social image sharing platforms and on webcam sites.
In addition, we present a methodology for automatically detecting and extracting
the sky part of the images leveraging deep learning models for concept detection
and localization. Finally, we present an air quality estimation model that operates
on statistics computed from the pixel color values of the detected sky regions.

5.1 Introduction

Environmental data are crucial both for human life and the environment. Especially,
the environmental conditions related to air quality are strongly related to health
issues (e.g. asthma) and to everyday life activities (e.g. walking, cycling). Thus, it is
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necessary to provide citizens with up-to-date notifications regarding environmental
conditions. Typically, air quality data are measured by official measurement stations
established by environmental organizations and are made available to the public
through web sites or web services. However, official stations are few and mainly
located in urban areas, thus motivating use of crowdsourcing solutions to improve
the geographical coverage and density of air quality measurements. To this end, a
number of air quality monitoring initiatives (e.g. luftdaten.info1) have emerged that
promote the establishment of personal environmental stations by citizens, based
on low-cost and relatively easy-to-use hardware sensors. At the same time, the
increasing popularity of social media has resulted in massive volumes of publicly
available, user-generated multimodal content that can often be valuable as a sensor
of real-world events [1]. This fact coupled with the rise of citizens’ interest in
environmental issues and the need for direct access to environmental information
everywhere (both urban and rural areas) and without any extra specialized equip-
ment, has triggered the development of applications that make use of social data for
collecting environmental information and creating awareness about environmental
issues. In this context, this paper presents a framework that involves the collection
of publicly available images from social media platforms and public webcams, their
processing using image analysis techniques, and the application of a method for
mapping image color statistics to an air quality index. The proposed framework
is part of a platform developed by the hackAIR project2 that gathers and fuses
environmental data and specifically particulate matter (PM) measurements from
official open sources and from user generated content.

5.2 Related Work

Several initiatives attempt to provide citizens with environment-oriented informa-
tion collected from different data sources. Examples of such initiatives are: (a)
iSCAPE3 that encapsulates the concept of smart cities by promoting the use of low
cost sensors and the use of alternative solution processes to environmental problems,
(b) the Amsterdam Smart Citizens Lab4 that uses smartphones, smart watches, and
wristbands, as well as open data and DIY sensors for collecting environmental
data, (c) CITI-SENSE5, which provides air quality information based on portable

1http://luftdaten.info.
2http://www.hackair.eu.
3http://horizon2020projects.com/sc-climate-action/h2020-making-cities-sustainable.
4https://waag.org/en/project/amsterdam-smart-citizens-lab.
5http://www.citi-sense.eu.
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and stable sensors, (d) CAPTOR6, which aims at engaging a network of local
communities for monitoring tropospheric ozone pollution using low-cost sensors,
and (e) AirCasting7, which is an open-source platform that consists of wearable
sensors that detect changes in your environment and physiology, including a palm-
sized air quality monitor, an Android app, and wearable LED accessories.

The aforementioned projects use sensors, open data and smart watches as
sources. Another source for estimating air quality that has received recently a lot of
attention is photos due to their abundance and the fact that no specialized equipment
is required. Initiatives that use photos as source for estimating air quality are: (1) the
AirTick8 application which estimates air quality in Singapore by analyzing large
numbers of photos posted in the area, (2) the Visibility9 mobile application that
encourages users to upload images of sky to get response regarding visibility which
is an indicator of the air pollution of the area and (3) the hackAIR project’s air
quality platform that combines data from various sources including images posted
in social media and retrieved from public webcams.

The AirTick application [28] is a mobile app that can turn any camera enabled
mobile device into an air quality sensor. AirTick leverages image analytics and
deep learning techniques to produce accurate estimates of air quality following
the Pollutant Standards Index (PSI). AirTick first extracts the haziness from a
single photo and then converts it into an appropriate PSI value. With haziness
extracted from a given image, AirTick passes the haziness information to a Deep
Neural network Air quality estimator (DNA) to learn to associate given haziness
matrices with PSI values. DNA is designed based on the Boltzmann Machine (BM),
which is a neural network of symmetrically coupled stochastic binary nodes. The
conducted experiments showed that AirTick achieves, on average, 87% accuracy
in day time operation and 75% accuracy in night time operation. Although results
are encouraging, a limitation of the AirTick approach is that low light conditions
prevent the successful extraction of the haziness component of the images and lead
to accuracy deterioration.

Regarding the Visibility application, it is based on the work of [30] that requires
users to take pictures of the sky while the sun is shining, which can be compared
to established models of sky luminance to estimate visibility. Visibility is directly
related to the concentration of harmful “haze aerosols”, tiny particles from dust,
engine exhaust, mining or other sources in the air. Such aerosols turn the blue of
a sunlit clear sky gray. The Visibility app uses the accelerometers and the compass
incorporated on smartphones to capture its position in three dimensions while the

6http://captor-project.eu.
7http://aircasting.org.
8https://www.youtube.com/watch?v=l11abvYgvBY.
9http://robotics.usc.edu/~mobilesensing/Projects/AirVisibilityMonitoring.
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GPS data and time are used to compute the exact position of the sun. The system
has been tested in several locations in the US, including Los Angeles and Phoenix.
However, a drawback of the method is that it requires the images to depict only or
mostly sky, thus depending a lot on human judgement. Also users are requested
to specify explicitly the part of the image that contains sky pixels which adds
considerable manual effort.

Apart from the applications mentioned, several studies were carried out regarding
the estimation of air quality from images. In [21], the authors utilize six image
features together with additional information such as the position of the sun, date,
time, geographic information and weather conditions, etc., to estimate the amount
of PM2.5 (particles with aerodynamic diameter less than 2.5 micrometers) in the air.
Experimental results have shown that the image analysis method is able to estimate
the PM2.5 index accurately. Nevertheless, the method relies on the manual selection
and labelling of the regions of interest in order to operate effectively. This step
requires the users to precisely label the buildings in the photos they have taken,
which incurs significant overhead. Furthermore, the additional information required
by the method on top of the photos and labels of buildings may not always be
available, especially in outdoor locations without Internet access.

Another work is that of [46] that proposes an effective CNN-based model tailored
for air pollution estimation from raw images. Specifically, the proposed model
involves the use of a negative log-log ordinal classifier to fit the ordinal output well,
and the use of a new activation function for photo air pollution level estimation. The
proposed approach was validated with qualitative and quantitative evaluations on a
set of images taken in Beijing against several state-of-the-art methods and it was
found to incur smaller error in the air quality estimation.

Finally, in [20], the authors propose a system to estimate haze level based on
a single photo. The method proposed involves estimating a transmission matrix
generated from a haze removal algorithm, and estimates the depth map for all pixels
in the photo. A haze level score is computed by combining the transmission matrix
and depth map, and can be calibrated to estimate the PM2.5 level. The method was
evaluated both on synthetic and real photos providing promising results especially
in the synthetic database. Regarding the real photos, further research is required in
order to make large scale monitoring based on online user photos more reliable.

Saito and Iwabuchi [32] recently introduced a new method for measuring
aerosol optical properties from digital twilight photos. Their method allows for
the estimation of tropospheric and stratospheric aerosols, being very promising,
despite the fact that it focuses on twilight photos only. Zerefos et al. [44] had
previously introduced a simpler approach to retrieve aerosol loadings from paintings
from the period 1500–1900. It was found that aerosol concentrations increased in
the atmosphere following major volcanic eruptions. These eruptions inserted huge
amounts of aerosols in the stratosphere which remained there for years leading to
more reddish sunsets. Zerefos et al. [45] extended the research from Zerefos et al.
[44], covering the period 1500–2000.

A method close to that of Zerefos et al. [44] is followed in this work to estimate
the aerosol load in the atmosphere as described in detail in Sect. 5.6. However, the
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method is not limited to sunset conditions, is extended to images from users, social
media and public webcams and furthermore uses a better representation of the local
atmospheric characteristics. The methodology described in this chapter is part of
the framework developed within the hackAIR project and constitutes an update of
the system presented in [25] that overcomes several of its limitations (e.g. need for
more images, better sky localization methods).

5.3 Overall Air Quality Monitoring Framework

Figure 5.1 depicts the proposed framework. The framework produces PM measure-
ment estimations using recent (i.e. within the last 24 h) publicly available images.
These images are retrieved from media sharing platforms such as Flickr and public
webcams. The use of different sources aims to address the need for measurements
that are both large in number and cover a large area. Specifically, images retrieved

Fig. 5.1 Overview of hackAIR image-based air quality monitoring framework
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from media sharing platforms offer the advantage of abundance and high geographic
coverage (user generated images are expected to be captured in both rural and
urban areas) while images coming from webcams offer the advantage of standard
delivery of data on a daily basis, with known and standard quality and with fixed
location (webcams are usually installed in urban areas). With regard to social media
platforms, we use solely Flickr due to API usage restrictions imposed by other
popular image sharing platforms that we considered (see Sect. 5.4.1). The other
source of images is public webcams that depict parts of the skyline of an area of
interest.

After having collected the images from the aforementioned sources, a series of
steps is realized that aim at producing air quality estimations. Initially, a sky concept
detector is applied that detects whether sky is depicted in the image by using low-
level visual features and a classifier. In the sequel, sky localization detects the sky
regions within the image. Two approaches are considered for sky localization, one
based on deep learning techniques and the other on heuristic rules provided by
air quality estimation experts. The methods are used in a complementary way in
order to achieve better results compared to the results produced by either of the
two approaches alone. The parts of the images that are identified as sky are used
for measuring pixel color statistics, specifically the red to green (R/G) and green to
blue (G/B) ratios. The last step involves using these ratios for providing information
about the aerosol content of the atmosphere, which can be translated to air quality
estimation in the form of air quality index (e.g. low, medium, high).

5.4 Public Image Collection

Social media platforms and webcam sites constitute the sources for collecting
regularly updated publicly available images for the proposed framework. These
images should be geotagged to be usable from the proposed framework. In this
section we present which social media are suitable for collecting images, how we
retrieve data from them, as well as the webcams repositories that include webcams
dispersed around the world.

5.4.1 Social Media Platforms

Users upload billions of images on a daily basis in social media. However, not
all social media are suitable or equally popular for posting images. The KPCB
Internet Trends Report 201610 provides an overview of the trends related to image

10http://www.kpcb.com/blog/2016-internet-trends-report.
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sharing/posting for 2005–2015. Users upload more than three billion images per
day in social networks, and the top platforms for photo sharing are Snapchat,
Facebook Messenger, Instagram, WhatsApp and Facebook. Unfortunately, a careful
examination of these platforms reveals that Snapchat, Facebook Messenger, and
WhatsApp do not distribute the user-contributed images through a free API.
Instagram, on the other hand, added in June 2016 strict limitations on the apps
that could access the data and the number of data they could retrieve, and finally,
Facebook allows access only to images from public pages and not from personal
user profiles which significantly limits the number of available images.

According to KPCB Internet Report 201411, Flickr is the next social network in
terms of image uploads with more than 3.5 million new images uploaded daily in
201312. Flickr provides an open API that enables gathering all public images users
share through their profiles. Given the specifications and strict limitations of the
other social media platforms as well as the considerable amount of data uploaded to
Flickr, we conclude that Flickr is the most appropriate source of publicly available
social images.

The Flickr collector periodically calls the Flickr API in order to retrieve the
URLs and necessary metadata (e.g. timestamp, geolocation) of images captured
within the last 24 h. The collection of geotagged images is conducted by submitting
geographical queries to the flickr.photos.search API method, using the
woe_id parameter as input. This parameter allows geographical queries based on
WOEID13 (Where on Earth Identifier), a 32-bit identifier that uniquely identifies
spatial entities and is assigned by Flickr to all geotagged images. Moreover, to
retrieve only photos taken within the last 24 h, the min/max_date_taken

parameters of the flickr.photos.search endpoint are used, which operate
on the image’s Exif metadata. For the geographical area of Europe, the Flickr API
returns about 5000 geotagged images per day on average.

5.4.2 Webcam Image Collector

Another source of sky images is public outdoor webcams. Compared to images from
social networks, webcams offer the advantage of providing a continuous stream of
images from fixed and a priori known locations. As sources of public outdoor web-
cams, two large-scale repositories are used, AMOS14 [17] and webcams.travel15.

11http://www.kpcb.com/blog/2014-internet-trends.
12https://en.wikipedia.org/wiki/Flickr.
13https://en.wikipedia.org/wiki/WOEID.
14http://amos.cse.wustl.edu.
15https://www.webcams.travel.
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Fig. 5.2 Geographical distribution of webcams from AMOS and webcams.travel

Based on a set of experiments that we conducted, we found that many of the
webcams discovered using standard search engines (e.g. Google or Bing) for
a specific location are already contained in either AMOS or webcams.travel.
Therefore, we believe that these two repositories cover adequately the needs of
the proposed framework and there is no need for a specialized webcam discovery
framework. Combined, these sources provide data from more than 25,000 webcams
in Europe, which is our main area of interest. Figure 5.2 depicts the geographical
distribution of webcams stored in the two repositories (top 20 countries are
shown).

5.4.2.1 Collecting Images from AMOS Repository

In the case of AMOS, a web data extraction framework was developed that involves
downloading and parsing the web page of each webcam and retrieving the images
captured within the last 24 h. In order to identify the web page URLs of the webcams
located in Europe, we use a search form provided by the AMOS web site that
allows performing geographical queries by specifying bounding box coordinates.
The number of webcams located in Europe is 4893; however we should note that
not all matching webcams are active. The results page is parsed to extract the URLs
of the webcams and each page is downloaded and parsed to extract the necessary
information. The AMOS image collector is executed four times per day. An analysis
of the images collected for a period of 2 months showed that 2246 of the 4893
webcams are active.

5.4.2.2 Collecting Images from webcams.travel Repository

Webcams.travel is a very large outdoor webcams directory that currently contains
64,475 landscape webcams worldwide. Webcams.travel provides access to webcam
data through a comprehensive and well-documented free API16. The provided API

16https://developers.webcams.travel.
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is RESTful (i.e. the request format is REST and the responses are formatted in
JSON) and is available via Mashape17. In order to collect data from European web-
cams, an image collector application is implemented that uses the webcams.travel
API. In this type of queries the /webcams/list/ endpoint is exploited along
with the continent=EU explicit modifier which narrows down the complete list
of webcams to contain only webcams located in Europe. Moreover, two implicit
modifiers are used: (a) orderby which enforces explicit ordering of the returned
webcams, and (b) limit which is used for slicing the list of webcams by limit
and offset. The use of the limit modifier is necessary because the maximum
number of results that can be returned with a single query is 50. The last part of the
query (show=webcams:basic,image,location) is used so that in addition
to the basic information for each webcam (id, status, title), the returned webcam
objects also contain the URL of the latest image captured from the webcam (and
its timestamp) as well as the webcam’s exact geographical location. Similarly to the
AMOS image collector, the webcams.travel image collector is executed four times
per day.

5.4.3 Image Collection Statistics

The three image collectors, i.e. the Flickr collector, the AMOS webcams collector
and the webcams.travel collector, have been collecting images since 24/2/2017,
6/3/2017 and 2/5/2017, respectively. During this period and until 15/5/2017
1,019,938 images had been collected in total across the whole Europe from all
sources. Figure 5.3 shows the number of images collected daily from each source. A
close examination of the graph shows that the number of images collected each day
by the two webcam image sources is almost stable since an almost fixed number of
webcams are visited a fixed number of times each day. In particular, 2246 webcams
from AMOS and 1000 webcams from webcam.travel are visited exactly four times
per day and, as a result, about 9000 and 4000 images, respectively, are collected
daily from these sources. On the other hand, the number of images collected daily
from Flickr exhibits a large variability since it depends on the number of geotagged
images (in Europe) that are uploaded daily by Flickr users. As expected, the number
of images collected from Flickr increases significantly during Saturday and Sunday,
since users tend to capture and upload more images during weekends. On average,
about 5500 images are collected daily from Flickr.

17https://market.mashape.com/webcams-travel/webcams-travel.

espyromi@iti.gr



76 E. Spyromitros-Xioufis et al.

Fig. 5.3 Number of images collected daily from each source

5.5 Image Analysis for Sky Detection and Localization

The next step after image collection is image analysis. This comprises two
procedures that are based on sophisticated machine learning and computer vision
algorithms; sky detection and sky localization. Given an input image, sky detection
is first applied to determine whether sky is depicted in the image, and in case it does,
sky localization is applied to determine its exact position (i.e. image pixels). In the
sequel, we present an overview of state of the art methods for concept detection and

localization18, and then present the proposed framework.

5.5.1 Sky Detection

5.5.1.1 State of the Art

Concept detection in images aims at annotating them with one or more semantic
concepts (e.g. sky, trees, road, shadows, etc.) that are chosen from a pre-defined
concept list [38]. In general concept detection systems follow a process that first

18Although in our work we are interested only in the “sky concept”, the discussed methods have
been designed to work for a wide range of visual concepts and are therefore widely known as
concept detection/localization methods.
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performs extraction of visual features, then training of classifiers for each concept
using a ground-truth annotated training set, and finally, application of the trained
classifiers to the features extracted from the unlabeled images that return a set of
confidence scores for the presence of the different concepts.

Feature extraction from images refers to methods that aim at the effective
description of the visual content of images. Many descriptors have been introduced
for representing various image features and they can be divided in two main groups:
hand-crafted and Deep Convolutional Neural Network (DCNN)-based descriptors.
It should be noted that DCNN-based features outperform the hand-crafted features
in most applications [5].

Hand-crafted features are divided into global and local descriptors. Global
descriptors capture global characteristics of the image (e.g. the MPEG-7 [36]
descriptor). Instead, local descriptors represent local salient points or regions and
the most widely used are the SIFT descriptor [23] and its extensions (e.g. RGB-
SIFT [33]), and the SURF descriptor [4] and its variations (e.g. CSURF [39]).

The most recent trend in feature extraction and image representation is learning
features directly from the raw image pixels using DCNNs. These consist of many
layers of feature extractors and can be used both as standalone classifiers, i.e.,
unlabeled images are passed through a pre-trained DCNN that performs the final
class label prediction directly, or as generators of image features, i.e., the output of
a hidden layer of the pre-trained DCNN is used as a global image representation
[24, 37]. The latter type of features is referred to as DCNN-based and these features
are used in the proposed framework due to their high performance in terms of both
accuracy and efficiency.

Classification is the last step of the concept detection process. For learning the
associations between the visual features and concept labels, algorithms such as
Support Vector Machines (SVM) and Logistic Regression are used [24]. SVMs are
trained separately for each concept, on ground-truth annotated corpora, and when a
new unlabeled image arrives, the trained concept detectors return confidence scores
that show the belief of each detector that the corresponding concept appears in the
image.

5.5.1.2 Sky Detection Framework

In the employed framework, we train a 22-layer GoogLeNet [41] network on 5055
concepts, which are a subset of the 12,988 ImageNet concepts. Then, this network
is applied on the TRECVID SIN 2013 development dataset and the output of the
last fully-connected layer (5055 dimensions) is used as the input space of SVM
classifiers trained on the 346 TRECVID SIN concepts. Among these classifiers, we
use the one trained on the sky concept.
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In order to evaluate the accuracy of the employed sky detection framework, we
manually annotated (for the sky concept) 23,000 Instagram images (collected during
preliminary past data collection activities) that were captured in the city of Berlin
during the time period between 01/01/2016 and 15/04/2016. Sky detection was then
applied on each image and the generated confidence scores were recorded in order to
facilitate the selection of a decision threshold that provides a good trade-off between
precision and recall. Based on this analysis, we opted for a 0.6 threshold (i.e. the sky
concept is considered present if the confidence score is ≥0.6) which led to 91.2%
precision and 80.0% recall.

5.5.2 Sky Localization

Sky localization is an important computer vision problem which refers to the
detection of all pixels that depict sky in an image. In this section, we first present
the state of the art in sky localization (Sect. 5.5.2.1) and then describe the adopted
sky localization approach which consists of the fusion of two diverse approaches,
a deep learning-based one (Sect. 5.5.2.2) and one based on a set of heuristic rules
(Sect. 5.5.2.3), that were found to work in a complementary manner (Sect. 5.5.2.4).

5.5.2.1 State of the Art

An approach that was proposed by Zhijie et al. [47] suggests measuring the sky
border points. The authors propose several modifications of the original sky border
position function, namely the determination of multi-border points for detecting
complex sky regions in images. In [16], the authors suggest using blue color for
localizing and tracking RGB color in different applications of image processing.
Specifically, they propose a pixel based solution utilizing the sky color information.
The success of deep networks on several domains led to their application in semantic
segmentation as well. Specifically, several recent works have applied Convolutional
Neural Networks (CNNs) to dense prediction problems, including semantic segmen-
tation such as [8, 26, 29]; boundary prediction for electron microscopy by Ciresan
et al. [6] and for natural images by a hybrid convnet/nearest neighbor model by
Ganin and Lempitsky [9]. Moreover, Hariharan et al. [13] and Gupta et al. [12] adapt
deep CNNs to semantic segmentation, but do so in hybrid detection-segmentation
models. These approaches fine-tune a Regional-CNN system [11] by sampling
bounding boxes and/or region proposals for detection, semantic segmentation, and
instance segmentation. Finally, fully convolutional training is rare, but was used
effectively by Tompson et al. [42] to learn an end-to-end part detector and spatial
model for pose estimation.
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5.5.2.2 FCN for Sky Localization

In the proposed framework, we employ the fully convolutional network (FCN)
approach [22], which draws on recent successes of deep neural networks for
image classification (e.g. [19]) and transfer learning. Transfer learning was first
demonstrated on various visual recognition tasks (e.g. [7]), then on detection, and
on both instance and semantic segmentation in hybrid proposal classifier models
[11–13]. The work in [22] was the first to adapt deep classification architectures
for image segmentation by using networks pre-trained for image classification and
fine-tuned fully convolutionally on whole image inputs and per pixel ground truth
labels. Importantly, it was shown [22] that the FCN approach achieves state-of-the-
art segmentation performance in a number of standard benchmarks, including the
SIFT Flow dataset where the FCN-16 variant achieved a pixel precision of 94.3%
on the set of geometric classes, which include sky.

To measure the performance of the approach specifically on the task of sky
localization, we used the SUN Database19 [43], a comprehensive collection of
annotated images covering a large variety of environmental scenes, places and the
objects within. More specifically, we used the pre-trained (on the SIFT Flow dataset)
FCN-16 model made available20 by Long et al. [22], to predict the sky region of
the 2030 SUN images for which the polygons capturing the sky part are provided.
We measured a pixel precision of 91.77% and a pixel recall of 94.25%. It should
be noted, that we are interested mainly in the precision of the approach given that
what is required by the air quality estimation approach presented in Sect. 5.6 is
recognizing accurately even a small part of the sky inside the image.

5.5.2.3 Sky Localization Using Heuristic Rules

The second approach for sky detection is based on heuristic rules that aim at
recognizing the sky part of the images. The algorithm is based on identifying
whether the pixels meet certain criteria involving their color values and the size
of color clusters they belong to. The output of the algorithm is a mask containing
all pixels that capture the sky. Figure 5.4 presents the pseudocode of the proposed
method. It should be noted that the heuristic algorithm is far stricter than the FCN-
based since sun and clouds are not considered part of the sky. Similarly to the
FCN-based, the heuristic rule-based method was evaluated on the SUN database
obtaining a mean precision of 82.45% and a mean recall of 59.22%.

19http://groups.csail.mit.edu/vision/SUN.
20https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/siftflow-fcn16s.
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Fig. 5.4 Flowchart of the heuristic sky localization algorithm
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5.5.2.4 Comparison of Sky Localization Methods

As already mentioned both localization methods were evaluated on the SUN
database and the results showed that the FCN approach performed significantly
better than the heuristic approach. However, a visual inspection of the ground
truth annotations of the collection’s images, revealed that the image region that
is annotated as “sky” is not always suitable for air quality (AQ) estimation as in
many cases the sky part is not clear (e.g. contains clouds, the sun, small objects).
For these reasons, a specialized evaluation of the two sky localization methods that
focuses explicitly on their ability to correctly identify sky regions that are suitable
for AQ estimation is presented. To this end, out of about one million images that
were collected with the Flickr and the webcam image collectors, we filtered out
those in which the detection confidence of the sky concept is not very high (<0.8) to
ensure that most of the remaining images will depict sky and then we took a random
sample of 100 Flickr and 100 webcam images. For each image, sky masks were
extracted using both approaches and the following questions were collaboratively
answered by the authors:

• Q1-a: Does the image contain a sky region usable for AQ estimation? (Y/N)
• Q1-b: Please shortly describe the reason if you answered No to Q1-a.
• Q2: Is the sky region selected with the FCN approach usable for AQ estimation?

(Y/N)
• Q3: Is the sky region selected with the heuristic approach usable for AQ

estimation? (Y/N)

To ease the task, annotators were provided with horizontally aligned composite
images where the masks generated by each approach were placed next to the original
image (see Fig. 5.5).

The first question (Q1-a) aims at helping us identify images with a sky region
usable for AQ estimation, so that we can subsequently evaluate the different sky
localization methods only on images with a usable sky region. The responses to
Q1-a revealed that both for Flickr and webcams images about 60% of the images
contain a sky region that is usable for AQ estimation (“Yes” to Q1-a), while looking
at the distribution of responses to Q1-b, we see that in most cases and for both types
of images, it is the presence of clouds or cirrus clouds or the fact that the image
is captured too early in the morning or too late in the evening that render images
unusable for AQ estimation, despite the existence of a sky region.

Having identified images with usable sky regions, we focused on the ability of
each sky localization approach to extract these regions. The results are presented
in Table 5.1, which shows the percentages of correctly detected image regions
using the FCN (Q2) and the heuristic (Q3) approach for Flickr and webcam
images. At a first glance, the performance of the two methods appears much
worse than the performance obtained on the SUN database. Note, however, that
the evaluation performed here is much stricter as even if a small percentage of
the region recognized as sky includes non-sky elements, then the whole region
is marked incorrect. We observe that in contrast to the results obtained when the
evaluation was performed on the SUN database, the heuristic approach performs
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Table 5.1 Percentages of correctly/incorrectly detected sky regions using each sky localization
approach for Flickr and webcam images

Method Q2-FCN (Y/N) Q3-heuristic (Y/N)

Flickr 28.8%/71.2% 45.8%/54.2%

webcams 20.7%/79.3% 50.0%/50.0%

Fig. 5.5 Comparison of the masks generated by the FCN approach (2nd column) with the masks
generated by the heuristic approach (3rd column) for the images of the 1st column. The 4th column
shows the masks generated by the FCN+heuristic approach

better than the FCN approach as it manages to correctly detect the sky region in
45.76%/50.00% of the Flickr/webcam images versus only 28.81%/20.69% for the
FCN approach.

To better understand the merits of each approach, we performed a visual
comparison of the generated masks (two examples are shown in Fig. 5.5). The
comparison reveals that the masks generated by the heuristic approach are more-
fine grained (e.g. small objects and text overlays that are common in webcam images
are successfully filtered out), leading to more cases where all pixels identified as sky
are actually sky (“Yes” to Q2) compared to the FCN approach (“Yes” to Q3). The
FCN approach, on the other hand, is much better at avoiding “big” mistakes (e.g.
recognizing sea, buildings or windows as sky). Motivated by the complementarity
of the two approaches, we decided to develop a sky localization approach that
combines them (FCN+heuristic). More specifically, we first calculate the sky mask
using the FCN approach and then apply the heuristic algorithm, considering only
those pixels that have been recognized as sky by the FCN approach. This way,
we exploit the effectiveness of the FCN approach in roughly recognizing the sky
region of the image and then utilize the heuristic approach to discard small non-
sky elements. As can be seen in the right-most column of Fig. 5.5, FCN+heuristic

generates much better sky masks than either of the two approaches alone.
Besides this qualitative evaluation, we also performed a quantitative evaluation

of FCN+heuristic, as we did for the FCN and heuristic approaches, i.e. we collected
responses to the question: “Q4: Is the sky region selected with the FCN+heuristic

approach usable for AQ estimation? (Yes/No)” for the same set of 100 Flickr and
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Table 5.2 Comparison of FCN, heuristic and FCN+heuristic sky localization approaches

FCN heuristic FCN+heuristic

Accuracy 24.8% 47.9% 80.3%

Time/hardware 103 ms/Nvidia GTX1070 125 ms/Intel i7-3770 128 ms

100 webcam images. The results of this evaluation are presented in Table 5.2, which
shows the percentages of correctly, when considering all images (Flickr and web-
cams). As expected, there is a very large improvement as 80.34% of the sky regions
are correctly recognized by FCN+heuristic, compared to 47.86% for the heuristic

approach and 24.79% for the FCN approach. Table 5.2 also reports the average
(over 200 images) running time of the methods, when images are first downscaled
to a maximum size of 250,000 pixels (respecting the aspect ratio). We see that both
FCN and heuristic take slightly more than 100 ms per image on average, while
FCN+heuristic has a running time that is only slightly higher, due to the fact that
heuristic has to operate only on the pixels that are recognized as sky by FCN.

5.6 Air Quality Estimation Based on Sky Color Statistics

Aerosols are tiny particles suspended in the atmosphere which are emitted by
natural as well as human activities (volcanoes, desert dust, forest fires, sea salt
biomass burning, combustion of fossil fuel, industrial activities, etc.) [35]. Apart
from impairing the quality of the air, they determine the levels of surface solar
radiation by scattering and absorbing the light that comes from the sun [14]. Their
scattering and absorbing efficiency depends on their macrophysical, microphysical
and microchemical properties. So, aerosols, depending on their abundance and type,
leave their mark on the radiation that reaches the ground.

A number of passive remote sensing instruments (e.g., sunphotometers, spec-
trophotometers) are capable of retrieving aerosol optical properties such as Aerosol
Optical Depth (AOD) by measuring the radiation that reaches the ground at specific
wavelengths. As the instruments originally measure light intensities in order to
assign the measured light intensities to a specific AOD usually a Look-Up-Table
(LUT) approach is followed. LUTs are produced with the use of a radiative transfer
model (RTM). RTMs calculate the intensity of the light transferred within the
atmosphere under different user-input scenarios that include information about
the position of sun (solar zenith angle) relative to Earth and various atmospheric
parameters (e.g., clouds, aerosols, water vapor, ozone, surface albedo, etc.). This
way, one knows what the expected light intensity for specific atmospheric conditions
is. By comparing these measured light intensities with those from a LUT, an estimate
of the AOD can be retrieved.

According to the discussion above, the color (RGB) of the sky is expected to be
determined partly by the amount and type of aerosols in the atmosphere. To date
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there have been some scientific efforts around the world to retrieve atmospheric
aerosol properties from images taken from different types of digital cameras (e.g.,
[15, 27, 32]) and from paintings (e.g., [44, 45]). These efforts have returned
promising results so far and further improvement is ongoing. The method followed
in this work is based on the use of the ratio of the red and green band of the light
(R/G) and the ratio of green and blue band of the light (G/B) from images. The
main idea is that R/G and G/B depend on the amount and type of aerosols in the
atmosphere [32, 44].

We decided to follow this method for a number of reasons. First of all, as
discussed above, the method has already been validated in previous studies. It is
based on the physics of light propagation through the atmospheric medium, contrary
to approaches based on statistics or machine learning. This allows for a better
understanding of the atmospheric processes that lead to high and low ratios in
the images and makes it easier to understand the uncertainties and limitations of
the method and proceed to corrections. In addition, the use of ratios instead of
single-band RGB values compensates for biases emerging from factors such as
the camera type, exposure time, sky viewing angle, etc. The LUT approach (see
below) constitutes the basis of aerosol retrievals in atmospheric remote sensing,
from ground-based instruments to satellite sensors. The same LUT could be used for
retrieving the same quantities with images from passive remote sensing instruments
in the future, allowing for a more direct validation of the method. Finally, the method
is also fast, allowing its use on an operational basis.

The procedure that was followed for the production of the LUT is similar to
the one described in [44] but more detailed as it takes into account the special
characteristics of each region on a monthly basis, namely the optical properties of
the aerosols such as the single scattering albedo and the asymmetry parameter, the
ozone total column, the water vapor and the surface albedo. First, a LUT with the
R/G and G/B was produced in order to assign R/G and G/B values to various aerosol
loads. We use the aerosol optical depth at 550 nm (AOD550) as a measure of the
aerosol load in the atmosphere.

To produce the LUT we implemented radiative transfer simulations using
the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) radiative
transfer model [31]. The radiative transfer equation is solved using the DISORT
(Discrete Ordinate Radiative Transfer) method [40]. Sixteen streams were used. An
IDL (Interactive Data Language) code that “feeds” SBDART with the necessary
input data and executes the radiative transfer model for clear sky conditions was
developed [2, 3]. The diffuse radiance (radiant flux received by a surface per unit
solid angle per unit projected area) for the visible wavelength range (400–700 nm)
was calculated. The diffuse radiance values at 700 nm (Red) were divided by the
diffuse radiance values at 550 nm (Green) to get the R/G values and the radiance
values at 550 nm (Green) were divided by the radiance values at 450 nm (Blue)
to get the G/B values. Our tests showed that for specific sky viewing angles and
azimuth angles (direction relative to the sun) in summer one should use G/B instead
of R/G ratios as it is difficult to distinguish medium from high aerosol conditions
with R/G ratios.
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The globe was divided into 2592 grid cells with a resolution of 5◦
×5◦ and

a sub-LUT was created for each cell in order to take into account the special
characteristics of each region (optical properties of the aerosols, the ozone total
column, the water vapor column and the surface albedo) (Fig. 5.6). The radiative
transfer model was executed for clear-sky conditions for the central coordinates of
each grid cell. This was done for various days within a year, times within a day, sky
viewing angles, azimuth angles and for various AOD550 bins, taking into account
the special characteristics of each grid cell (input data). All these parameters are
crucial for the radiative transfer calculations and taking into account their spatial and
temporal variability increases the accuracy of the results. The core input data come
from global climatologies and reanalysis projects. The aerosol optical properties
(single scattering albedo and asymmetry parameter) come from the MACv121 (Max-
Planck-Institute Aerosol Climatology version 1) climatology [18], the total ozone
column, the water vapor column and surface albedo come from the ECMWF’s ERA-
interim reanalysis dataset22 and the elevation data used in the calculations come
from the U.S. Geological Survey GTOPO30 product.23

Fig. 5.6 Flowchart of the method followed for the production of the LUT

21ftp://ftp-projects.zmaw.de.
22http://apps.ecmwf.int.
23http://earthexplorer.usgs.gov/.
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The result of the radiative transfer calculations is a LUT consisting of 2592
ASCII columnar files (sub-LUTs), one for each 5◦

×5◦ grid cell. The sub-LUTs
include the R/G ratio (where Red: 700 nm and Green: 550 nm), and the G/B ratio
(where Green: 550 nm and Blue: 450 nm) for different days within a year, hours
within a day and AOD550 bins. After going through a number of tests for specific
spots it was decided that sky viewing angles of 45◦ and azimuth angles of 90◦ should
be used as the majority of user generated photos are close to this scenario.

The final step of the retrieval procedure includes the calculation of the AOD550

that corresponds to the photo R/G ratio. This is done by calculating the difference
of the LUT R/G ratio values that appear in the sub-LUT that corresponds to the
geographical coordinates of the photo with the photo R/G values and selecting
the AOD550 value from the sub-LUT that minimizes this difference. As discussed
above, only for summer and for specific sky viewing and azimuth angles G/B ratios
are used instead of R/G ratios. Similarly to [45], the errors in AOD550 should be less
than 0.05 for values around 0.1 and can be up to 0.18 for AOD550 values greater
than 0.5. To avoid the uncertainties inserted in cases of large solar zenith angles the
method is not applied to images taken close to the sunrise or sunset.

So far, the method has been tested for various places in Greece and in Europe.
Results from three tests implemented for the city of Thessaloniki, Greece (an aerosol
hot spot for the region of Eastern Mediterranean: [10]) and Europe as a whole are
presented here, showing that the use of R/G (G/B) ratios is capable of revealing
urban as well as regional particle pollution features.

5.6.1 Test 1

On 10/6/2016 from 18:10 to 18:55 (local timezone) we crossed Thessaloniki, Greece
(1.5 million inhabitants) using the bus from one side of the city to the other following
the coastline. A photo was taken each time the bus stopped in front of a bus stop
(see Fig. 5.7 for the position of the 39 bus stops). The 39 photos were taken at
a viewing angle of ∼45◦ and an azimuth angle of ∼30◦ relative to the sun. The
photos were processed in order to calculate the R/G ratio. The results show that
the R/G ratio increases gradually as one gets into the city centre. The R/G ratio
decreases for an extended area covered with green and trees in the centre of the
city, then increases again and finally decreases gradually as the bus leaves the city
centre. As the distance covered by the bus is nearly 16 km and the R/G levels have
a reasonable variability taking into account the expected emissions in the city (busy
streets, parks, etc.), the method seems to be adequate to characterize the aerosol
variability within an urban centre. According to these results the method is expected
to have a spatial representativeness of 1–2 km.
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Fig. 5.7 Bus stops where photos were taken during the Thessaloniki transect experiment (lower
panel) and the corresponding R/G values for each one of the 39 stations (upper panel)

5.6.2 Test 2

Annual AOD550 maps for Thessaloniki were produced using 435 Flickr images
for the year 2012 (Fig. 5.8). Figure 5.8 was created using ordinary kriging for
interpolation. The results were compared against PM2.5 maps from [34] for Thes-
saloniki. In [34], the authors used a data assimilation algorithm coupling dispersion
modeling and ground station data. The resulting PM2.5 map of the metropolitan area
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Fig. 5.8 AOD levels over the city of Thessaloniki, Greece as retrieved from Flickr images for the
year 2012

Fig. 5.9 Comparison of results from Flickr (a) and webcam (b) images with MODIS/Terra
satellite retrievals (c) from Europe. The data cover the period 24/2/2017 to 13/4/2017

of Thessaloniki reveals similar features with Fig. 5.7 (high pollution to the left of the
port and pollution hot spots at the same locations) which adds further credibility to
our results.

5.6.3 Test 3

We computed annual AOD550 maps for Europe using ∼31,000 Flickr and ∼25,000
webcam images for the period March–April 2017 (Fig. 5.9a, b). Our results are
compared against AOD550 maps (Fig. 5.9c) with data from the MODIS/Terra
satellite sensor (Col. 6, L3 data) which were acquired from NASA’s Giovanni web
database.24 These maps show consistently high and low values over specific regions.
All the maps share the same features (e.g., high values in N. Italy, Pays Bas, etc.).
However, the Flickr images show better details than MODIS or webcam images.
Hence, in the Flickr map several major cities are also seen.

24https://giovanni.gsfc.nasa.gov.
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5.7 Conclusions and Future Work

The proposed framework comprises all the steps required for estimating air quality
from publicly available images. The sources used for image retrieval are social
media platforms and webcams. As far as the social media platforms that could be
used, a study was realized that covered all the popular platforms that are used for
image sharing. The results of the study revealed that Flickr is the most appropriate
candidate due to the strict limitations on data usage imposed by the other social
media platforms as well as the considerable amount of data uploaded to Flickr. A
set of experiments regarding the images returned by Flickr covering Europe shows
that the average number of geotagged images collected daily are approximately
5000. As far as webcams are concerned, two very large repositories of webcam
images were analyzed, AMOS and webcams.travel. Both repositories were found
to contain a significant number of webcams and, at the same time, offer a relatively
simple way of retrieving images and other required information (location and time)
from them. Consequently, two specialized collectors were implemented, facilitating
the collection of images from approximately 3500 different European locations at
regular time intervals.

All the collected images are processed using a three-step procedure. The first
step involves sky detection, the second sky localization, and the third air quality
estimation. Sky localization involves detecting the sky part of the image and
two methods were studied. One based on Fully Convolutional Networks and one
based on heuristic rules proposed by air quality experts. An evaluation of the two
techniques was realized, showing that the two methods achieve better results when
applied in a complementary way. Eventually, for the sky part of the images the R/G
and G/B ratios are calculated and air quality estimation is realized. A number of
atmospheric aerosol measurements using personal photos, images from Flickr and
from webcams for the city of Thessaloniki, Greece and Europe was produced to
study the ability of the method to reveal local and regional pollution features. The
first comparisons with results from previous studies and with satellite observations
highlight the potential of the method.

The evaluation of the proposed framework showed that results are promising.
However, there is still room for improvement with respect to the accuracy of the
sky detection and localization methods and the spatial and temporal resolution of
the LUTs. It has been shown that the presence of cirrus clouds is in many cases
the reason why an image is considered unsuitable for air quality estimation. Even
though in many cases it is difficult to decide whether an image is unsuitable for
air quality estimation due to the presence of cirrus clouds even with a naked eye,
a possible direction for future work would be the development of a specialized
concept detector that would automatically recognize and filter sky-depicting images
where sky is covered by this type of clouds or the use of haze as proposed in other
works for estimating air quality.

As a final remark, we would like to point out that the very promising results
of the proposed framework as well as results of a number of other recent works
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on image-based air quality estimation, on one hand highlight the potential of using
images as cheap air quality sensors but on the other hand highlight the importance
of evaluating all these approaches under a common evaluation framework in
order to draw more reliable conclusions with respect to their relative merits. The
development of such a benchmark is a promising direction for future work.

Acknowledgements This work is partially funded by the European Commission under the
contract number H2020-688363 hackAIR.

References

1. Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Göker, A.,
Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. IEEE Transactions on
Multimedia 15(6), 1268–1282 (2013)

2. Alexandri, G., Georgoulias, A., Meleti, C., Balis, D., Kourtidis, K., Sanchez-Lorenzo, A.,
Trentmann, J., Zanis, P.: A high resolution satellite view of surface solar radiation over the
climatically sensitive region of eastern mediterranean. Atmospheric Research 188, 107–121
(2017)

3. Alexandri, G., Georgoulias, A., Zanis, P., Katragkou, E., Tsikerdekis, A., Kourtidis, K., Meleti,
C.: On the ability of regcm4 regional climate model to simulate surface solar radiation patterns
over europe: an assessment using satellite-based observations. Atmospheric Chemistry and
Physics 15(22), 13,195–13,216 (2015)

4. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Computer Vision
and Image Understanding 110(3), 346–359 (2008). Similarity Matching in Computer Vision
and Multimedia

5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

6. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment
neuronal membranes in electron microscopy images. In: Advances in neural information
processing systems, pp. 2843–2851 (2012)

7. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep
convolutional activation feature for generic visual recognition. In: International conference on
machine learning, pp. 647–655 (2014)

8. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene
labeling. IEEE transactions on pattern analysis and machine intelligence 35(8), 1915–1929
(2013)

9. Ganin, Y., Lempitsky, V.: Nˆ 4-fields: Neural network nearest neighbor fields for image
transforms. In: Asian Conference on Computer Vision, pp. 536–551. Springer (2014)

10. Georgoulias, A.K., Alexandri, G., Kourtidis, K.A., Lelieveld, J., Zanis, P., Pöschl, U., Levy,
R., Amiridis, V., Marinou, E., Tsikerdekis, A.: Spatiotemporal variability and contribution of
different aerosol types to the aerosol optical depth over the eastern mediterranean. Atmospheric
Chemistry and Physics 16(21), 13,853 (2016)

11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587 (2014)

12. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from rgb-d images for
object detection and segmentation. In: European Conference on Computer Vision, pp. 345–
360. Springer (2014)

espyromi@iti.gr



5 Towards Improved Air Quality Monitoring Using Publicly Available Sky Images 91

13. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation.
In: European Conference on Computer Vision, pp. 297–312. Springer (2014)

14. Haywood, J., Boucher, O.: Estimates of the direct and indirect radiative forcing due to
tropospheric aerosols: A review. Reviews of geophysics 38(4), 513–543 (2000)

15. Igoe, D., Parisi, A., Carter, B.: Characterization of a smartphone camera’s response to
ultraviolet a radiation. Photochemistry and photobiology 89(1), 215–218 (2013)

16. Irfanullah, K.H., Sattar, Q., Sadaqat-ur Rehman, A.A.: An efficient approach for sky detection.
IJCSI International Journal of Computer Science Issues 10 (2013)

17. Jacobs, N., Roman, N., Pless, R.: Consistent temporal variations in many outdoor scenes. In:
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–6.
IEEE (2007)

18. Kinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast, S., Giorgetta, M.,
Eck, T.F., Stevens, B.: Mac-v1: A new global aerosol climatology for climate studies. Journal
of Advances in Modeling Earth Systems 5(4), 704–740 (2013)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp. 1097–1105
(2012)

20. Li, Y., Huang, J., Luo, J.: Using user generated online photos to estimate and monitor air
pollution in major cities. In: Proceedings of the 7th International Conference on Internet
Multimedia Computing and Service, p. 79. ACM (2015)

21. Liu, C., Tsow, F., Zou, Y., Tao, N.: Particle pollution estimation based on image analysis. PloS
one 11(2), e0145,955 (2016)

22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3431–3440 (2015)

23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal
of computer vision 60(2), 91–110 (2004)

24. Markatopoulou, F., Mezaris, V., Patras, I.: Cascade of classifiers based on binary, non-binary
and deep convolutional network descriptors for video concept detection. In: Image Processing
(ICIP), 2015 IEEE International Conference on, pp. 1786–1790. IEEE (2015)

25. Moumtzidou, A., Papadopoulos, S., Vrochidis, S., Kompatsiaris, I., Kourtidis, K., Hloupis,
G., Stavrakas, I., Papachristopoulou, K., Keratidis, C.: Towards air quality estimation using
collected multimodal environmental data. In: International Workshop on the Internet for
Financial Collective Awareness and Intelligence, pp. 147–156. Springer (2016)

26. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic
phenotyping of developing embryos from videos. IEEE Transactions on Image Processing
14(9), 1360–1371 (2005)

27. Olmo, F.J., Cazorla, A., Alados-Arboledas, L., López-Álvarez, M.A., Hernández-Andrés, J.,
Romero, J.: Retrieval of the optical depth using an all-sky ccd camera. Applied optics 47(34),
H182–H189 (2008)

28. Pan, Z., Yu, H., Miao, C., Leung, C.: Crowdsensing air quality with camera-enabled mobile
devices. In: AAAI, pp. 4728–4733 (2017)

29. Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In:
International Conference on Machine Learning, pp. 82–90 (2014)

30. Poduri, S., Nimkar, A., Sukhatme, G.S.: Visibility monitoring using mobile phones. Annual
Report: Center for Embedded Networked Sensing pp. 125–127 (2010)

31. Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D.: Sbdart: A research and teaching software
tool for plane-parallel radiative transfer in the earth’s atmosphere. Bulletin of the American
Meteorological Society 79(10), 2101–2114 (1998)

32. Saito, M., Iwabuchi, H.: A new method of measuring aerosol optical properties from digital
twilight photographs. Atmospheric Measurement Techniques 8(10), 4295–4311 (2015)

espyromi@iti.gr



92 E. Spyromitros-Xioufis et al.

33. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and
scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9),
1582–1596 (2010)

34. Sarigiannis, D.A., Karakitsios, S.P., Kermenidou, M.V.: Health impact and monetary cost of
exposure to particulate matter emitted from biomass burning in large cities. Science of The
Total Environment 524, 319–330 (2015)

35. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate
change. John Wiley & Sons (2016)

36. Sikora, T.: The mpeg-7 visual standard for content description-an overview. IEEE Transactions
on Circuits and Systems for Video Technology 11(6), 696–702 (2001). 10.1109/76.927422

37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

38. Snoek, C., Cappallo, S., Fontijne, D., Julian, D., Koelma, D.C., Mettes, P., van de Sande, K.,
Sarah, A., Stokman, H., Towal, R., et al.: Qualcomm research and university of amsterdam
at trecvid 2015: Recognizing concepts, objects, and events in video. In: NIST TRECVID
Workshop (2015)

39. Spyromitros-Xioufis, E., Papadopoulos, S., Kompatsiaris, I., Tsoumakas, G., Vlahavas, I.: A
comprehensive study over vlad and product quantization in large-scale image retrieval. IEEE
Transactions on Multimedia (2014)

40. Stamnes, K., Tsay, S.C., Wiscombe, W., Jayaweera, K.: Numerically stable algorithm for
discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media.
Applied optics 27(12), 2502–2509 (1988)

41. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1–9 (2015)

42. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and
a graphical model for human pose estimation. In: Advances in neural information processing
systems, pp. 1799–1807 (2014)

43. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene
recognition from abbey to zoo. In: Computer vision and pattern recognition (CVPR), 2010
IEEE conference on, pp. 3485–3492. IEEE (2010)

44. Zerefos, C., Gerogiannis, V., Balis, D., Zerefos, S., Kazantzidis, A.: Atmospheric effects of
volcanic eruptions as seen by famous artists and depicted in their paintings. Atmospheric
Chemistry and Physics 7(15), 4027–4042 (2007)

45. Zerefos, C., Tetsis, P., Kazantzidis, A., Amiridis, V., Zerefos, S., Luterbacher, J., Eleftheratos,
K., Gerasopoulos, E., Kazadzis, S., Papayannis, A.: Further evidence of important environ-
mental information content in red-to-green ratios as depicted in paintings by great masters.
Atmospheric Chemistry and Physics 14(6), 2987–3015 (2014)

46. Zhang, C., Yan, J., Li, C., Rui, X., Liu, L., Bie, R.: On estimating air pollution from photos
using convolutional neural network. In: Proceedings of the 2016 ACM on Multimedia
Conference, pp. 297–301. ACM (2016)

47. Zhijie, Z., Qian, W., Huadong, S., Xuesong, J., Qin, T., Xiaoying, S.: A novel sky region
detection algorithm based on border points. International Journal of Signal Processing, Image
Processing and Pattern Recognition 8(3), 281–290 (2015)

espyromi@iti.gr


