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Abstract. Oil spill pollution comprises a significant threat of the oceanic
and coastal ecosystems. A continuous monitoring framework with auto-
matic detection capabilities could be valuable as an early warning system
so as to minimize the response time of the authorities and prevent any
environmental disaster. The usage of Synthetic Aperture Radar (SAR)
data acquired from satellites have received a considerable attention in re-
mote sensing and image analysis applications for disaster management,
due to the wide area coverage and the all-weather capabilities. Over
the past few years, multiple solutions have been proposed to identify oil
spills over the sea surface by processing SAR images. In addition, deep
convolutional neural networks (DCNN) have shown remarkable results
in a wide variety of image analysis applications and could be deployed
to overcome the performance of previously proposed methods. This pa-
per describes the development of an image analysis approach utilizing
the benefits of a deep CNN combined with SAR imagery to establish an
early warning system for oil spill pollution identification. SAR images are
semantically segmented into multiple areas of interest including oil spill,
look-alikes, land areas, sea surface and ships.The model was trained and
tested using multiple SAR images, acquired from the Copernicus Open
Access Hub and manually annotated. The dataset is a result of Sentinel-1
missions and EMSA records for relative pollution events. The conducted
experiments demonstrate that the deployed DCNN model can accurately
discriminate oil spills from other instances providing the relevant author-
ities a valuable tool to manage the upcoming disaster effectively.

Keywords: Oil spill identification, SAR image analysis, Deep Convolutional
Neural Networks, Disaster management.

1 Introduction

Oil slicks have a significant impact to the ocean and coastal environments as
well as to maritime commerce and activities. Early measurement is crucial in
such cases to manage the disaster and prevent further environmental damage.
Toward this direction, various algorithms and approaches have been presented
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to identify automatically oil polluted areas over the sea surface. Most of these
methods process satellite data and apply various remote sensing principles.

Considering the main objective of an early warning system, the accurate
identification of oil slicks could assist the relevant authorities to have a more
complete overview of the event. A wider dispersion of oil slicks on sea surfaces will
result to major environmental problems not only to the maritime environment
but also in coastal territories if its detection time is significantly large. Reversing
the posed problem, a framework that provides a better understanding of the oil
polluted areas and how its dispersion involves will decrease the response time and
thus, manage the disaster more efficient. An all-weather solution will enhance
even more the reliability of the system for such situations. Thus, proper satellite
image analysis can potentially provide such solutions towards the required early
disaster management.

Aiming at identifying oil spills by analyzing visual representations, the pro-
posed model processes SAR images due to their independence regarding the
weather conditions and the acquisition time. The method deploys a DCNN and
semantically segments the regions of the input image into instances of interests
(oil-spills, ships, land etc.). Due to the nature of the architecture, the model
essentially learns the physics behind the oil spills, like size and shape, and so, it
can accurately classify the required image regions.

The rest of the paper is organized as follows. In section 2, relevant works deal-
ing with the oil spills identification problem are analyzed while in section 3, the
proposed model is outlined. Section 4 presents the corresponding experimental
results and finally, conclusion are drawn in Section 5.

2 Related Work

Incentive algorithms were focused on the utilization of images in the visible
spectrum. Numerous approaches were proposed such as exploiting polarized
lenses [14] and hyper-spectral imaging [5]. Researches proved that in visible
spectrum oil slicks and water cannot be sufficiently distinguished while further
limitations are inserted due to weather and luminosity conditions. Nevertheless,
the field is considered still active due to the advancements of sensing technolo-
gies. To surpass optical sensor constraints, microwave sensors including radars
were utilized. For early pollution detection, the acquired data rely on specialized
sensors, namely Synthetic Aperture Radar (SAR), where successive pulses of ra-
dio waves are transmitted from some altitude and their reflection is recorded to
produce a representation of the scene. SAR imagery was primarily used in [12]
due to its invariance in lighting conditions and the occlusion caused by the ex-
istence of clouds or fog [3].

”Bright” SAR image regions, known as sea clutters, are produced by capillary
waves which, under the existence of oil spills, are depressed and depicted as dark
formations. However wind slicks, wave shadows behind land, algae blooms, and
so forth. [3] can result to similar formations minimizing the effectiveness of the
oil spill detector. The most common procedure of similar detections includes



Early Identification of Oil Spills in Satellite Images Using Deep CNNs 3

four discrete phases [18]. The first two phases include the detection of the dark
formations in SAR images and the corresponding feature extraction, respectively.
The features are compared with some predefined values in the third phase and
finally, a decision making model classifies each formation. Several disadvantages
accompany this method, originating from the restriction of extracting a set of
features, the absence of a solid agreement over their nature and the lack of
research over their effectiveness.

The majority of such detectors involve a two-class classification procedure,
where one class corresponds to oil spills and a second, more abstract class that
corresponds to dark formations of all similar phenomena [3]. The second class
is usually considered as a group of subclasses like current shear, internal waves
and so on. The characterization of the ”dark spots” is highly affected by adja-
cent contextual information, like the presence of similar formations, ship routes
etc. Considering the high resolution of the satellite SAR sensors, the acquired
images may include not only maritime areas but coastal territories, also. Since
SAR sensors operates under microwave frequencies, metallic objects are depicted
as bright spots due to the beam reflectance. This explicit discrimination results
to a fixed number of classes which comprises the main set in most relevant ap-
proaches. For example, decision trees were utilized in [18] to classify the extracted
geometrical and textual features and so, oil spills could be discriminated from
look-alikes. In addition, an object-oriented approach was used in [10] to radar
image analysis and improve manual classification at the scale of entire water
bodies. Conventional neural networks were also utilized to identify such envi-
ronmental disasters [16] focusing on classifying the entire input image with one
single label. Finally, a deep CNN model was used in [13] to discriminate oil spills
with look-alikes nonetheless, the analysis was limited to a binary classification
process.

Aiming at mitigating the limitations imposed by the relevant approaches,
the proposed method utilizes a DCNN to segment semantically the processed
SAR images instead of labeling local patches or marking the entire images. The
classification result is applied at a pixel level and thus, the final image represen-
tation includes a map with all pixels annotated. In addition, most of the relevant
methods prerequisite the extraction of some features that can describe the char-
acteristics of the oils spills. Due to the sequential convolutional layers of the
model, the requirement of computing initially a set of features to be classified
as other relevant methods is not valid. Moreover, in relevance to similar DCNN-
based methods [13], the presented scheme comprises a multi-scale architecture
with four parallel DCNN branches resulting to more accurate classifications.
Finally, the model was trained to identify more instances including land territo-
ries which eventually could increase the situational awareness of the operational
personnel to manage more effectively the pollution disaster.
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3 Methodology

The presented oil slick detector intends to segment semantically the input images
and highlight the identified instances unlike the single labeling of the entire
SAR image. Oil dispersion creates a wide range of irregular shapes that may
also coincide with vessels or look alike objects. Thus, semantic segmentation
could consist the most appropriate approach compared to other alternatives like
defining multiple labels in input image [19] or bounding boxes over detected
objects [9]. The presented method can analyze images containing multi-class
objects without the need of breaking the image into multiple patches to label
the identified instances.

The CNN model relies on the DeepLab model [1], which is reported to achieve
high performances in various multi-class segmentation problems [7,15]. Following
the DeepLab architecture, the presented oil slick detector consists of four DCNN
branches to perform image semantic segmentation while convolution is applied
with upsampled filters [8], originally introduced in [4]. Atrous convolution in
combination with an Atrous Spatial Pyramid Pooling (ASPP) is deployed to
provide parallel filters of different rate and meet the requirements for dense and
wide field-of-view filters. Finally, bilinear interpolation is utilized to increase the
resolution of the extracted feature maps and restore the initial resolution of the
input image. In Fig. 1, a higher level representation of the overall procedure is
presented.

The initially proposed model employs a fully convolutional architecture based
on ResNet-101 model and pre-trained on MS-COCO dataset [11], which resulted
to the highest performance in image semantic segmentation. Nonetheless, the
repetition of max-pool blocks and strides through the network deteriorates the
feature maps’ resolution and increases the computational time requirements.
To eliminate such constraints, atrous convolution was employed to control the
feature maps’ resolution over the network’s layers.

As an example, in case of a 1-D input signal z[i] atrous convolution with a
filter w(k] of length K, gives the output signal y[i] as following:

yli] = Zm[i+r~k]w[k], (1)

k=1

where parameter r defines the stride with which signal z[i] is sampled. Regular
convolution can be considered a special case of (1) where r = 1.

4 Multiscale Branches
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Fig. 1. High-level representation of the presented model.
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DCNNs can identify similar objects of multiple scales and rotation due to
the training procedure in similar representations. However, further robustness
to scale variability is required for oil spill identification due to the orbit of the
satellite. Scene and object representation in such images can display wide va-
riety due to difference of the operational altitude. Moreover, oil spills present
extreme diversity in shape and size due to the physics of dispersion. The model
deploys atrous spatial pyramid pooling for managing the scale variability and
was inspired from the corresponding R-CNN technique in [6]. As a result, the
classification efficiency of the multi-scale regions is achieved by resampling the
feature maps at a set of different rates and further processing them before fusing
for the final output. At the final process stage, bilinear interpolation is utilized
for the extracted feature maps to regain the initial resolution of the input im-
age. To further enhance the scaling robustness, the model was extended with a
multi-scale process to resolve the scale variability issue.

More specifically, four parallel DCNN branches that share the same param-
eters are used and extract separate score maps from the original image, two
rescaled versions and a fused version of all of them. The four branches are com-
bined in one by taking the maximum score across them at each position. It
should be also noted that the impact on detector’s performance of final CRF
layer of the DeepLab model was also examined through the experiments. How-
ever, it was exclude it from the finalized model’s architecture since it is mainly
useful to refine the segmentation results, which in our case did not improve seg-
mentation accuracy rates. For the oil spill detection, objects and regions in SAR
imagery present ambiguous shape outlines, resulting in minor improvements of
the segmentation accuracy when CRF module is employed, while a computa-
tional overhead is added.

4 Experimental Results

4.1 Dataset Description

One key challenge that the researchers has to confront in classification models
is the absence of a public dataset which may be utilized for benchmarking. In
previous works [2,10,18] the required datasets were developed manually making
relevant works almost non comparable. This constraint motivated us to develop
a new dataset by collecting satellite SAR images of oil polluted areas via the
European Space Agency (ESA) database, the Copernicus Open Access Hub!.
To ensure the validity of the data and the inclusion of oils spills in the images,
the European Maritime Safety Agency (EMSA) provided the confirmed oil spill
events through the CleanSeaNet service along with their geographic coordinates.
By this approach, we guaranteed that the dark spots depicted in the SAR images
correspond to oil spills.

After downloading the appropriate records, a set of preprocessing stages were
conducted so that the products could be processed as common images:

! https://scihub.copernicus.eu/
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Localization of the confirmed oil spills.

Cropped regions that contain both the oil spills and contextual information.
Rescaling the images to a resolution of 1250x650.

Radiometric calibration for projecting the images onto the same plane.
Speckle noise suppression with a 7x7 median filter.

Linear transformation from db to real luminosity values.

A sufficient number of SAR images were processed with the above procedure
each of which may include instances of interest such as oil spills, look-alikes, ships
and coastal territories. The representations were manually annotated based on
the EMSA records accompanied with human identification. During the annota-
tion process, every region was semantically marked with a specific colorization,
producing a ground truth mask for every image. A training and a testing set
consisting of 771 and 110 images,respectively, were created by randomly sam-
pling the annotated images. Finally, it must be highlighted that the database is
extended constantly and could be accessed by the community after receiving the
proper confirmations by the relevant authorities.

4.2 Results

For the conducted experiments, three foreground classes were defined i.e. oil
spills, look-alikes and ships as well as two classes for the background pixels
corresponding to land and sea areas. The overall performance was measured
in terms of pixel intersection-over-union (IoU) for every class and averaged for
all classes (mlIoU). Since the dataset will be meant for future methods bench-
marking, a predefined training and testing set should be established. Thus, we
decided not to cross-validate the dataset in order to produce comparable results
with future proposed methods, following the approach of models benchmarking
as in [1], where the model is evaluated in 4 benchmarking datasets. Further-
more, considering the stochastic nature of oil spills shape and size,representative
training and testing sets can be produced by single splitting the dataset. Thus,
cross-validation would add an exhaustive computational overhead.

Our initial experiments were conducted using the aforementioned dataset
and by deploying a simple DCNN network [1] without any multi-scale approach
implemented.The selected batch size is equal to 16 image patches while every
batch fed into the model is considered as one step of the training process. The
corresponding results are provided in Table 1. Based on the numerical results,
it can be concluded that that the background areas can be detected with high
accuracy when the steps are increased, while oil spills and look-alikes drop bellow
50%. The latter is justifiable since the model cannot generalize without multi-
scale analysis and thus, the dominant classes overfit the remaining classes. One
interesting result is that ”look-alike” class achieves its highest accuracy with
5K steps and drops gradually when they are increased, contrary to the oil spill
accuracy. This behavior occurs because the pixels of both classes are usually
misclassified. Comparing the results of the basic DCNN model with the results
of the CRF expanded model (DCNN-CRF), no significant improvement was
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Table 1. Segmentation results of simple model using mIoU/IoU.

Intersection-over-union (IoU)

Steps ‘ Sea Surface Oil Spill Look-alike Land mloU
DCNN
5k 93.4% 14.9% 39.8% 70.3% 54.6%
10k 93.3% 19.8% 36.5% 70.9% 55.1%
15k 93.1% 20.6% 36.5% 67.9% 54.5%
20k 93.8% 21.4% 35.8% 75.1% 56.5%
DCNN-CRF
5k 93.7% 10.8% 40.9% 72.0% 54.4%
10k 93.5% 12.6% 36.7% 72.2% 53.8%
15k 93.2% 13.9% 36.2% 69.0% 53.1%
20k 94.2% 15.4% 36.9% T7.5% 56.0%

Table 2. Segmentation results of multiscale model using mIoU/IoU.

Intersection-over-union (IoU)

Steps ‘ Sea Surface Oil Spill Look-alike Land mloU
Multi-scale DCNN
15k 95.3% 43.4% 34.0% 85.1% 64.49%
20k 95.1% 47.6% 33.2% 85.8% 65.49%
25k 95.5% 40.3% 53.5% 82.5% 68.0%
30k 96.0% 48.0% 50.9% 89.9% 71.2%
35k 95.6% 42.3% 45.0% 87.3% 67.6%
Multi-scale DCNN-CRF
15k 95.19% 37.0% 30.3% 89.8% 63.1%
20k 95.1% 38.1% 30.3% 89.8% 63.3%
25k 95.6% 30.6% 53.3% 84.7% 66.1%
30k 96.0% 39.6% 50.2% 92.9% 69.7%
35k 95.7% 34.1% 44.2% 90.8% 66.2%

achieved since the mask does not contain substantial background noise due to
the speckle filtering preprocessing stage.

The second set of our experiments included the testing of a multi-scale DCNN
scheme to deal with the semantic segmentation of the SAR images. Due to the
computational overhead of the four parrallel DCNN branches the initial batch
size (16) was reduced in this case to 2 image patches per training step. The
results are presented in Table 2, where multi-scale DCNN and DCNN-CRF were
evaluated. Regarding the CRF addition, the module did not improve significantly
the performance of the model as observed also in the case of a single DCNN
branch. In addition, the segmentation rates were increased according to the
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Table 3. Segmentation results of simple model using mIoU/IoU.

Intersection-over-union (IoU)

Steps ‘Sea Surface Oil Spill Look-alike Ship Land mloU
10k 93.0% 19.5% 36.5% 12.7% 67.5% 45.9%
20k 93.6% 21.0% 35.8% 11.5% 72.0% 46.8%

Table 4. Segmentation results of multiscale model using mIoU/IoU

Intersection-over-union (IoU)

Steps ‘Sea Surface Oil Spill  Look-alike Ship Land mloU
10k 95.6% 49.7% 54.9% 15.7% 86.9% 60.6%
20k 95.4% 50.1% 45.8% 20.1% 78.4% 58.0%
30k 95.1% 50.3% 35.4% 22.4% 87.56% 58.1%
40k 95.8% 38.1% 48.2% 25.4% 88.8% 59.3%

training steps, resulting to state-of-the-art outcomes when comparing to Table 1.
Similar to the results of the first set of experiments, the background classes were
identified more accurate than the foreground but, in comparison with the the
simple model, the accuracy rates were improved for the foreground regions, as
well. This result occurs due to the lesser number of the foreground ground truth
pixels in comparison with the corresponding background pixel. Nonetheless, a
more efficient sampling approach could improve the results.

Additional experiments were performed to examine the model’s segmentation
capability in an extended version of our dataset, where ships and vessels were
separately identified and thus, a new class was inserted. The extracted results are
presented in Table 3 and Table 4 for the simple and the multi-scale analysis, re-
spectively. Results proved once again the advantage of the multi-scale technique
over the simple DCNN. The corresponding results display a minor decrement
in comparison with the four classes case nonetheless, as far it concerns the oil
spill detection, the model can still identify accurately the polluted territories. On
the contrary, ship localization rates are considered low, as expected, since the
corresponding image regions are too narrow/small and therefore, difficult to be
sufficiently identified. Moreover, the number of the ship samples was insufficient
for the training process since the main objective was to identify the polluted
areas and not directly their potential source. In order to have a more generic
model that could deal pollution related tasks in general, the database will be
augmented with further samples of objects of interest.

The results of both techniques can be visually compared in Figure 2 for 4
and 5 classes (simple refers to one branch [13] while msc corresponds to the
four branches approach). Analyzing the two figures, we can conclude that the
proposed multi-scale DCNN outperforms the simple DCNN when oil spills and
look-alikes are concerned. Both techniques perform high segmentation rates for
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Fig. 2. Mean IoUs of (a) 4 classes and (b) 5 classes.

background pixels, i.e. sea surface and land area, leading over 90% and 80%,
respectively. Similarly, the foreground regions are identified equally sufficient,
regardless the complexity of the task (oil spills and ship localization).

For comparisons, we additionally utilized the segmentation accuracy of the
highest performance model in the four classes problem, so as it could be com-
pared with simple models of image classification. Therefore, a determined amount
of overlapping patches were cropped from each pair of ground truth and pre-
dicted masks. In order to arise a credible dataset, the following restrictions were
introduced:

1. Apart from sea surface class, each patch should contain at least a minimum
amount of pixels classified in one of the rest three classes. A threshold of
2% was selected implying that the class containing the most pixels should
contain at least 2% of the amount of pixels of the sea surface class.

2. An image patch is labeled only if one of the three classes dominates. So, a
threshold was defined equal to 50%, meaning that the dominant class should
contain at least 50% of the amount of the pixels of a non dominant class.

3. If a patch does not satisfy the aforementioned rules, it is excluded from the
accuracy estimation.

Classification results for image patches are presented in Table 5. Since cal-
culated accuracy is dependent of the amount of patches extracted from every
image, two different values for the horizontal-vertical ratio of patch size were ex-
amined. It should be noted that the results included in the tables are somehow
dissimilar since, for the second metric, a single label is evaluated for every patch.

A possible comparison with relevant approaches would be somehow iniquitous
due to the lack of a common image dataset as a base. Moreover, most of other
relevant approaches attempt to solve a binary classification problem (oil spills
and look-alikes), in contrast with the proposed method, excluding other infor-
mation that may be valuable in disaster management. In addition, our algorithm
annotates each pixel with one valid state where other methods designate image
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Fig. 3. Example of 4 testing images (from top to bottom): SAR images, ground truth
masks and resulted detection masks overlaid over SAR images.

regions and so, accuracy is determined in a completely different basis.Thus, com-
paring classification approaches for different posed problems is somehow invalid.
Nonetheless, some results of comparison are provided. The method in [16] which
exploits a neural network resulted a 91.6% and 98.3% accuracy for oil spills
and look-alikes (without considering the ship instances), respectively. Highest
accuracy was achieved by the method in [18] which deployed a decision tree
forest and achieved an accuracy equal to 85.0%. Finally, the probabilistic based
method in [17] achieved accuracy equal to 78% and 99% for oil spill and look-
alikes classes, respectively. Without the constraint of extracting features, initial
results of the proposed approach are comparable to those of state-of-the-art
methods and with the merit of semantically annotated regions.

Table 5. Segmentation accuracy results.

Image patch classification accuracy results

Number of patches: 3,3

Overall Oil Spill Look-alike Land
85.2% 89.1% 69.2% 97.4%
Number of patches: 5,3
Overall Oil Spill Look-alike Land
84.1% 91.0% 67.6% 93.8%

For representation and qualitative purposes, Figure 3 includes some exam-
ples of semantically annotated images in order to demonstrate the accuracy of
the model and the distinctiveness of the problem. The cyan colored pixels de-
note the identified oil spill regions while the red marked pixels corresponds to
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look-alike areas. In addition, green marked territories resembles the coastal re-
gions while black colored corresponds to the sea surface. Finally, the detected
vessels are marked with brown color and cover the smallest image regions in the
representations. Oil spills are very similar to look-alikes as both are represented
by black masses and so, they can easily be misclassified. Nonetheless, the model
was properly trained to discriminate these instances due to the differences they
display as natural phenomena (size, shape etc.). Eventually, their accurate iden-
tification relies on the fact that the model itself learned their physical attributes
providing a valuable discrimination for the disaster management authorities.

5 Conclusions

In this paper, a novel approach was proposed for oil spill detection based on SAR
image analysis aiming at a disaster management framework at early stages. Ro-
bust DCNN models can automate the detection of the polluted areas along with
relevant objects like look-alikes, vessels or coastal regions. In addition, based on
the performed analysis, initial results indicate that such models can provide an
accurate estimation about the upcoming disaster targeting the best situation
awareness of the relevant authorities. Thus, such models can be integrated to
wider frameworks for disaster and crisis management. The extracted results are
comparable to the state-of-the-art results, nonetheless, for general classification
problems. More specific for the oil spill detection problem, the adaptation of
relevant and more accurate deep learning methods may lead to further improve-
ment of the identification accuracy. Larger training sets with sufficient samples
and images acquired with improved SAR sensors could substantially improve
the accuracy values, also. Current work can be extended to manage similar en-
vironmental disasters like floods. Thus, relevant image samples will be required
to enhance the current database in order to refine and retrain the model.
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