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Abstract A novel first-person human activity recognition framework is pro-
posed in this work. Our proposed methodology is inspired by the central role
moving objects have in egocentric activity videos. Using a Deep Convolutional
Neural Network we detect objects and develop discriminant object flow his-
tograms in order to represent fine-grained micro-actions during short temporal
windows. Our framework is based on the assumption that large scale activities
are synthesized by fine-grained micro-actions. We gather all the micro-actions
and perform Gaussian Mixture Model clusterization, so as to build a micro-
action vocabulary that is later used in a Fisher encoding schema. Results
show that our method can reach 60% recognition rate on the benchmark ADL
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dataset. The capabilities of the proposed framework are also showcased by
profoundly evaluating for a great deal of hyper-parameters and comparing to
other State-of-the-Art works.

Keywords Activity recognition · Object detection · Egocentric vision ·
Ambient assisted living

1 Introduction

The continuous rise of the video format as a medium for communication has
brought a digital video revolution to the modern connected world. It is safe to
say that is has now surpassed the popularity of image and text formats judging
by the countless online multimedia platforms that support it and the amount
of video clips the web pages are filled with daily. The use cases are endless:
from do-it-yourself tutorials, to marketing and live event broadcasting that
are uploaded online, many popular public video repositories contain massive
amounts of video content. It is not only the attractive combination of auditory
and visual content that is making the medium popular, but also the technology
of modern wearables that push seemingly every single person to carry a tiny
video camera at all times, plus the convenient ways that exist for the videos
to end up posted online for immediate consumption on social media.

In most of the videos uploaded online, humans are the center of attention
and the thematic content is in one way or another moving around the activities
that they perform. Multimedia processing and computer vision researchers
have shown much interest in the exploitation of those huge databases. The
proposed solutions can address the needs of several real life applications, such
as video surveillance and security applications, human behavior understanding,
video indexing and retrieval, human-machine interaction, etc.

In this work, we process videos captured by wearable devices and more
precisely we focus on the recognition of the human activities such videos con-
tain. Besides the use of wearables as entertainment devices mostly in outdoor
environments, this technology can also be used effectively in order to monitor
indoor activities of patients. Those patients that may have a critical disease are
often called to live inside their own homes, as nursing homes and hospitals can
not accommodate them in their own premises for too long. However, for some
of them it is essential that a doctor or a carer should continue monitor their
health and keep a log file of their behaviors throughout time. Thus, this work
is mostly motivated by the need of efficiently recognizing human activities of
daily living that are captured by wearable cameras in indoor environments.

Huge attention has been drawn to generic human activity recognition that
capture the human subjects from distant cameras, or third person viewpoints,
but the first-person activity recognition field is relatively understudied. There
are several challenges when dealing with the task of first-person activity recog-
nition, the main one being the lack of human actors in the field of view. The
severe distortions that may also appear in egocentric videos, like field of view
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distortions, and ego-motion from the user’s movements, may negatively im-
pact the process of extracting meaningful representations of activities using
the State-of-the-Art methods proposed for third-person activity recognition.
First-person video datasets have recently emerged, [36], [31], [38], as well as
first-person activity recognition challenges [9], calling for more interest on the
subject.

With human movements out of the field of view, most of the related work
focuses on either human hand movements that may be still in the frame,
or hand-object interactions [57], [3]. Many of the recent works also employ
Deep Convolutional Neural Networks (CNNs) to study those interactions, as
well as multiple CNNs that are tailored to complete a certain task in the
whole framework [57], [51]. Our contribution lies close to the object-centric
approaches, but we also focus on efficiency in all the steps of our methodology
in order to recognize activities while maintaining feasible computational times.
To this aim, we build upon a previous work of ours [18] by exploring a more
appropriate dimensionality reduction scheme that exploits the sparsity of our
representations to reduce the computational complexity during training whilst
achieving comparable results. Additionally, we explore in this work the impact
of motion compensation to our low-level descriptors.

In contrast with most of the previously published works, we not only de-
tect relevant objects but also extract their individual motion patterns using
object flow histograms. Moreover, aggregating the motion features by class
over short temporal windows allows us to build discriminative representations
that relate directly to the object manipulation patterns. In addition, we encode
those patterns in a binning framework to understand their usage in short-term
actions, which are fundamental building blocks of long-term activities. Unlike
other State-of-the-Art (SoA) works, our current implementation does not rely
on any hand movement information at all or other modalities, like sensory
equipment or gaze information.

The rest of this paper is structured as follows. In section 2, we present
the state-of-the-art related work, while in section 3, we show our proposed
methodology. Section 4 describes our experimental work and evaluation results
are included. Finally, conclusions are drawn in section 5.

2 Related Work

In this section we examine the previous work on activity recognition, and
briefly on object detection, as it is an integral part of our approach.

2.1 Activity Recognition

Previous works on activity recognition can be categorized based on the appear-
ance of human actors that perform the activities, or lack thereof. For activity
recognition of the first category, where human actors appear in the activity
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clips, most of the pre-CNN era works dealt with motion analysis using opti-
cal flow and the analysis of dense trajectories [24], [50], [49], [25], [1], which
involved the process of extracting classic low-level descriptors like Histograms
of Oriented Gradients (HOG), Histograms of Optical Flow (HOF) and Mo-
tion Boundary Histograms (MBH), to represent the visual and motion features
around keypoints. Towards more temporally-aware methods, others have cho-
sen to model activities as sequences of sub-actions focusing on the temporal
structure of visual patterns [17], [39]. Shortly after the CNN impact, the di-
rection was steered naturally towards deep learning approaches. Amongst the
most popular was the multi-stream CNNs [51], [15], [45], that work by feeding
various modes of video frames, mainly an RGB channel and an optical flow
channel, in order to extract deep CNN visual and motion features and repre-
sent activities based on fusion of the two. In a later work, information from the
actors pose was more effectively captured using pose-based CNN features [4].
Other methods that appeared later rely on RNNs, to more accurately model
the temporal dynamics of activities. More specifically, the modern technique
of deep visual attention was combined with RNNs in [42] and [11]. More re-
cent works focused on refining existing techniques like in [44] where optical
flow derivation features (OFF) where plugged in existing CNN-based action
recognition schemes. In [14] the two-stream CNN approach was modernized
by injecting residual connections, while the more recent TSN framework [52]
works in sampled video segments with the aim to model long-range temporal
structures more efficiently.

For first-person activity recognition other approaches have been proposed
where, in contrast to the previous methods, human actors cant be seen per-
forming the activities. Human hands or lower body parts are naturally the
only information we can get as far as the actors movements are concerned.
Therefore, in the context of representing activities of daily living, object ma-
nipulation and hand movements are the main source of visual information. As
such, many of the works in this category propose to describe activities by an
object-centric manner following the information that derives from the existence
of specific objects in the scene [13], [38], [34], [57]. Moreover, scene understand-
ing is also used in [47]. In [54] a multi-task clustering framework tailored to
first-person view (FPV) activity recognition is presented. Another more recent
approach is to use deep CNN architectures [53] to learn deep appearance and
motion clues. Deep CNNs are also used to learn hand segmentations in or-
der to understand the activities that a user performs and his interaction with
other users that might also appear in the video frame [57], [3], [2]. More recent
works focus on multi-modal analysis of egocentric cameras and information
from other wearable sensor equipment with the deployment of early or late
fusion schemes [35], [6], [5].
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2.2 Object Detection

Since our method is heavily dependent on object detection, we provide here a
brief overview of the literature on this subject as well. Several works have been
proposed to solve this task with outstanding results in challenging datasets
[32], [10], [30], [12]. The breakthrough of deep CNNs that were thoroughly
examined for this task include works like the seminal work of [19], which de-
ployed a proposal generator [46] step to feed the network. Later, the bounding
box proposal network was incorporated into an end-to-end deep architecture in
Faster R-CNN [41], achieving better performance and faster prediction during
testing. Others have focused on deep end-to-end single shot detectors that pre-
dict classes and box coordinates directly using the last convolutional feature
maps, like the SSD [33] and YOLO [40] detectors. Since then more works have
been proposed that focused on faster detection time like in [7] and [28], and
were based on sharing convolutions to multiple layers. The most recent high
performance detectors were based on minor tweaks to vanilla models, but have
produced significant performance boost nevertheless [26], [43], [56], [55], [58].

3 Methodology

In this section we take a closer look at how our proposed framework processes
the activity clips. The motivation behind the modeling of micro-actions is first
discussed, and then a detailed description for each processing stage is given.

Fig. 1 Block diagram of the proposed methodology.

Activities of daily living such as “book reading”, “hand washing” or “prepar-
ing breakfast” usually take place in long segments inside an egocentric video,
lasting on average a couple of minutes. Instead of trying to capture directly
long-term dynamics, it is suitable to get a deep understanding of the lower level
actions the actors are performing in order to accomplish the large scale activ-
ities. For example the activity “preparing breakfast” involves the fine-grained
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actions “opening the fridge”, “grabbing butter”, “closing the fridge”, “taking
a knife”, “spreading the butter”, etc. This group of micro-actions as we call
them, does not always need to form a complicated sequence for every activity.
For example, the activity “reading a book”, except for the actual “reading”
activity, usually involves one micro-action performed repeatedly, i.e., “turning
the page”. For those reasons, we seek a way of extracting a representation of
the full duration of an activity clip which will be informative towards the set of
micro-actions that are involved and have a strong ability to uniquely describe
the activity.

It is very well established in the literature [13] [38] [34] [57] that every
activity is related closely to a group of active objects and a group of passive
objects. The first group contains objects that are handled by the person during
the activity, and the second group contains objects that are simply within the
view of the camera when the activity is performed. Objects are good indicators
of certain activities such as the TV in the “watching television” activity or
the book in the “reading a book” activity. We further elaborate this notion by
hypothesizing that not only the presence, but also the characteristic motions
of the objects in the scene are powerful enough to discriminate between active
and passive ones. For example, motion information from dishes that are being
washed combined with the presence of a tap in the scene can uniquely describe
the “washing dishes” activity.

The overall framework is shown in figure 1. The above assumptions are
taken into account in our activity recognition method. First, we detect objects
using a Deep CNN architecture that combines a deep feature extraction net-
work and a bounding box coordinate regression network, that predicts object
classes and locations in the video frames. We combine the powerful detector
with a tracking algorithm, eliminating the need to utilize the deep architecture
for every frame, in order to achieve near real time object detection. Then, every
detected object’s motion is processed using HOF or MBH [8] features, so as
to form the lower level micro-action representations that appear in short time
windows over the full activity sequence. The resulting micro-action descriptors
go through a dimensionality reduction step, which keeps the representations
compact with minimum loss of information. Finally, Gaussian Mixture Model-
ing (GMM) is used for clustering in order to extract prototype micro-actions,
finding the most discriminative of the full set. Given a set of micro-action
descriptors extracted for a single activity sequence and the GMM clustering
centers, a Fisher encoding schema is used in order to yield the final descriptor
of the full activity sequence in a Bag-of-Micro-Actions type of representation.

3.1 Object Detection

In order to detect the activity-related objects in the egocentric videos, we
chose to extract deep image representations and predict pixel coordinates of
bounding boxes using a deep CNN object detector. To this end, we adopt
a modification of the Faster-RCNN which was originally proposed in [41].
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A thorough evaluation of this model and comparisons with other SoA deep
object detectors, presented in [23], reveal that the Faster-RCNN-resnet101 ar-
chitecture achieves a good trade off between speed and accuracy. This model
incorporates the resnet101 [21] deep feature extractor and a region proposal
network, along with a bounding box classifier and coordinate regressors. In
order to make the object detection procedure more efficient during inference
time, we find useful to track the detected objects found in a frame into the next
T frames of the video, instead of running the detector for each single frame.
Since we do not expect dramatic cuts during an activity clip, we still manage
to get good quality detections at far greater speeds. By assigning a detection
rate of T > 15 our combined detector and tracker algorithm achieves near real
time performance. We manually set the detection rate parameter to 15 follow-
ing empirical evaluation after trials with other values ranging from 5 to 30.
Intuitively, the detection rate defines the temporal resolution of the continuous
object detection function. Lower detection rate means higher temporal reso-
lution of the detector and vice versa. For a usual 30 fps video, by setting the
detection rate to 15 the detector only operates between half-second intervals
and the tracker works the rest of the time. This is expected to yield adequate
temporal resolution, considering that it is very unlikely that an object will
appear and disappear in less than half a second. The core functionality of our
tracker is based on the KCF tracking algorithm that was proposed in [22].

3.2 Micro-Action Representation

Our method builds representations of short, fine-grained actions, of fixed tem-
poral window W , from the motion patterns of the objects that are found in
this window. More specifically, we first compute a dense optical flow field,
to extract the full scene’s motion between two consecutive frames. We use
the OpenCV implementation of the dense inverse search algorithm proposed
in [29]. In addition, doing the calculation every other frame inside the window,
instead of every frame, leads to W/2 calculations which yields faster computa-
tion times. Having already detected the objects in a particular frame we take
each bounding box as our region of interest and crop the dense optical flow
map accordingly, taking only the portion that belongs to the object. Conse-
quently, we can calculate HOF (histograms of optical flow) descriptors that
represent an object’s motion.

To calculate an object’s HOF descriptor we apply a 2X2 uniform grid on
top of the bounding box region. For each one of the 4 cells, flow orientations
are quantized into an 8 bin histogram weighted by their magnitude values. In
addition, we chose to apply a soft binning method that distributes the votes
between adjacent bins, based on the distances of the values from adjacent bins
centers. This procedure results in a 32-dimensional motion descriptor that is
extracted for every object in the scene. If multiple objects from the same class
appear in one frame, we aggregate the vectors and divide by the number of
objects, so as to get the average motion descriptor of that particular class. In
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the case of absence of any objects from a particular class, the corresponding
HOF descriptor is set to the zero vector. Let C be the number of classes the
detector can predict and Nc the number of objects found for class c. The early
object class motion descriptors are formed as follows:

Dc =
1

Nc

Nc∑
j=1

HOF32, c = 1 . . . C (1)

By concatenating L2 normalized motion descriptors for each class we get a
complete description for a pair of consecutive frames in the window W :

Rf = {D1, D2, . . . , Dc} (2)

Finally, we concatenate those descriptors throughout W/2 frame pairs to get a
complete representation of a micro-action composed by the object’s movement
patterns that appeared in the window:

M = {R1, R2, . . . , RW/2} (3)

One problem with the accurate extraction of object motion from egocen-
tric videos is that very frequently the wearable camera moves along with the
person that is wearing it. As a result, ego-motion may overpower the delicate
dynamics of the objects’ motion that we are trying to capture. Therefore, we
consider an alternative to the HOF descriptor, that is the MBH descriptor
where the optical flow field is first separated into its x and y component and
spatial derivatives are computed for each one of them. This time we obtain a
32-dimensional descriptor for each component (64-dimensional after concate-
nation) following the same procedure to obtain the final descriptor as in the
previous case. Because MBH is the gradient of the optical flow, any motion
that is happening constantly (global motion) is suppressed and only informa-
tion about changes in the flow field (i.e., motion boundaries) is kept [48].

Given that there are Nc possible object classes, the dimensionality of a
micro-action descriptor is given by W

2 ×Nc×32 for HOF and W
2 ×Nc×64 for

MBH. It is expected that the dimensionality is increased dramatically for a
high number of object classes or longer windows W . Moreover the descriptors
can be very sparse because of total absence of certain objects classes, where the
respective values are set to zeros. Therefore, we proceed with two alternative
approaches to apply the dimensionality reduction stage, while at the same time
we exploit the sparsity in a way that yields lower computational complexity.

3.3 Dimensionality Reduction

The high dimensionality of our micro-action descriptors severely affects the
computational burden which we intended to alleviate through dimensional-
ity reduction approaches. For dimensionality reduction two approaches were
adopted, i.e., Principal Component Analysis (PCA) and random projections
(RP).
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PCA projects the data onto a lower-dimensional orthogonal subspace that
captures as much of the variation of the data as possible. Due to the fact that
PCA approach is quite expensive to compute for high-dimensional data sets we
also investigate a computationally simpler method of dimensionality reduction
that does not introduce a significant distortion in the dataset, i.e., the RP
approach. In RP the original high-dimensional data, X ∈ Rn×D is projected
onto a lower-dimensional subspace using a random matrix whose rows have
unit lengths. More formally, using matrix notation where X ∈ Rn×D is the
original set of n d-dimensional observations,

Y = XR (4)

where R ∈ RD×d is the random matrix and Y ∈ Rn×d is the projection of
the data onto the lower d-dimensional space. The fundamental idea of random
projection arises from the well-celebrated Johnson-Lindenstrauss lemma [27]
which states that if point instances in a vector space are projected onto a
randomly selected subspace of appropriate dimension, then distances are ap-
proximately preserved [16]. In this work we use random matrix whose elements
are Gaussian distributed with zero mean and unit variance.

Due to its computational simplicity and our sparse feature vectors, RPs
are ideal for the dimensionality reduction task in this work. In particular, the
aforementioned random projection procedure is of order O(Ddn) and taking
account that X is in our case sparse (assuming l nonzero entries per row) the
complexity is of order O(ldn) [37].

3.4 Activity Recognition

For a given activity sequence, the extraction of micro-action descriptors that
represents a small sequence of W frames takes place with a stride of S frames.
We chose that value to be exactly 1 second in all our experiments. This simply
means that for every micro-action descriptor M we skip 1 second into the
video before we begin extracting the next micro-action descriptor. Contrary
to using overlapping windows, the stride parameter was inserted to give our
method a speed boost. The micro-action descriptors are extracted from fixed
length temporal windows W . In contrast, the length of the activity clips are
not expected to be constant. Therefore, the number of micro-action descriptors
that are formed can vary, depending on an activity’s duration and the length
of W . Given that the micro-action window W is chosen sufficiently small, it
can be guaranteed that the number of micro-actions that will be formed for an
activity sequence will be enough for the activity to be adequately represented.

All micro-action descriptors extracted from all the training activity se-
quences are fed into a Fisher encoding schema. This way, a micro-action vo-
cabulary based on the most discriminating ones is constructed. The computa-
tion of the most discriminating samples is performed by applying unsupervised
clustering, using Gaussian Mixture Modeling, in the micro-action representa-
tion hyperspace.
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Let {µj , Σj , πj ; j ∈ RL} be the set of parameters for L Gaussian mod-
els, with µj , Σj and πj standing respectively for the mean, the covariance
and the prior probability weights of the jth Gaussian. Assuming that the D-
dimensional early descriptor is represented as M i ∈ RD; i = {1, . . . , N}, with
N denoting the total number of descriptors, Fisher encoding is then built upon
the first and second order statistics:

f1j =
1

N
√
πj

N∑
i=1

qijσ
−1
j (xi − µj)

f2j =
1

N
√

2πj

N∑
i=1

qij [
(xi − µj)

2

σ2
j

− 1]

(5)

where qij is the Gaussian soft assignment of descriptor Mi to the jth Gaussian
and is given by:

qij =
exp[− 1

2 (Mi − µj)
TΣ−1

j (Mi − µj)]∑L
t=1 exp[−

1
2 (Mi − µt)TΣ

−1
j (Mi − µt)]

(6)

Distances as calculated by Eq. 5 are next concatenated to form the final
2LD-dimensional Fisher vector, FX = [f11, f21, . . . , f1L, f2L], that character-
izes each activity sequence. The final Fisher encoding for a specific activity
sequence can now be classified using an SVM or a Neural Network classifier.

4 Experimental Work

In this section, we first describe the experiments that we conducted, so as to
select the best hyper-parameters for our activity recognition algorithm, while
also comparing the performance of different descriptor options (HOF, MBH).
The performance of our object detection and tracking algorithm is presented as
well. Additionally, we extend our experimental work by studying alternative
dimensionality reduction techniques in order to examine the validity of our
assumptions. Furthermore, we applied camera ego-motion compensation, as
in [20], to examine the improvement it may bestow upon our best models
for both descriptors. We accumulated and present activity recognition results
for each class, in the form of confusion matrices, and examine how each class
performs depending on object detection performance. Finally, we present a
comparison of our framework with other SoA works in terms performance in
the ADL dataset in order to prove the applicability of our method.

4.1 Dataset

We performed our experiments on the ADL dataset [38]. It is composed of
videos recorded with a wearable camera from 20 different persons. The videos
contain realistic scenes of daily living and the benchmark is challenging due
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to the existence of global camera motion. The objects are also in many cases
occluded. From the 48 different classes of objects that are available, we select
the 34 most frequently annotated to train our object detector. We also select a
subset of 18 activity classes, as in [57], to train our activity recognition frame-
work so as to present comparable results with previous works. The taxonomy
of the activity classes is given in Figure 2. The activity classes can be divided
in three major sub-categories.

Fig. 2 Taxonomy of activities in the ADL dataset.

4.2 Object Detection

To train our object detector we used only the first 6 videos, since this is the
typical way of splitting the dataset and is reported in previous works. During
testing we set the detection rate to 15 frames and track the detected boxes,
managing to achieve detection inference time at a rate of 12 fps on average.
Our object detector achieves an overall 26.9% mAP on the 14 remaining test
videos. A detailed performance evaluation per object category is shown in
Table 1. The detector performs very well on several classes for which many
annotated samples are provided in the training set (over 1000). However, it
performs poorly on small objects like “towel” or “pills” and it even yields 0%
mAP on three object classes. Small items that are handled by the actors are
expected to be heavily occluded in comparison with big static objects such as
a TV, an oven or a microwave. Figure 3 shows qualitative detection results in
test frames of the ADL Dataset.

4.3 Hyper-parameter Selection

We experimented with two different durations for the temporal window: W =
90 and W = 60 frames. Those two values correspond to 3 seconds and 2
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Table 1 Per-class performance evaluation of our object detector on the ADL dataset
(mAP%).

tv 77.77 person 72.63 tv remote 69.03 tap 66.19
oven/stove 58.58 door 56.90 microwave 53.36 laptop 48.25

washer/dryer 41.97 container 37.53 fridge 37.47 soap liquid 36.12
dish 35.45 mug/cup 33.46 kettle 28.19 pan 24.09

tooth brush 18.13 book 17.69 bottle 16.75 knife/spoon/fork 16.06
tooth paste 11.90 cell phone 11.54 detergent 11.23 vacuum 8.30
food/snack 6.94 trash can 6.38 dent floss 3.65 pitcher 3.32

towel 2.69 pills 1.18 blanket 1.13 cell 0
tea bag 0 comb 0

(a) (b)

(c) (d)

Fig. 3 Object Detection qualitative results.

seconds respectively for the videos of the ADL Dataset which were recorded
at 30fps. Considering that the activity average duration is in the order of
minutes in this dataset, we manage to get enough micro-action descriptors
assigned to each activity and simultaneously capture more complex object
motions through time. Furthermore, we show that micro-actions of 3 or 2
seconds are long enough for our method to perform close to SoA levels. The
two choices for our temporal window W proves to be convenient for algorithmic
speed considerations as well.

The length of the micro-action descriptors before dimensionality reduction
is W

2 × 34× 32 for the HOF descriptor and W
2 × 34× 64 for the MBH descrip-

tor. In this stage, we use only two options for the dimensionality reduction
stage, using PCA with 80 and 256 components, so as to focus on evaluating
the other hyper-parameters. Later, we perform an extended study between
various modes of dimensionality reduction on the most promising model con-
figurations.
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We also experiment here with two different vocabulary sizes, using 32 or
64 Gaussians. For the final stage, we deploy as our classifier, a fully connected
neural network (NN1) with a depth of two layers, of width 512 and 256 ac-
cordingly, using RELU activations, 50% chance of dropout between layers and
softmax activation in the output layer. Another similar architecture (NN2)
was also deployed with half the amount of neurons for each layer (256 in the
first layer and 128 in the second) and a linear SVM classifier as a third option
for the sake of classifier comparison.

To evaluate the action recognition performance as in [57], we performed
the leave-one-person-out cross-validation strategy for every hyper-parameter
combination and we report the mean average precision (mAP) and standard
deviation. Tables 2 and 3 present analytically our scores for every experiment.

Table 2 Activity recognition results for HOF descriptor

Model comparison (mAP%) for HOF descriptor

SVM NN1 NN2

W 90 + PCA 80 + GMM 32 43.19 ± 15.1% 52.40 ± 16.3% 47.07 ± 14.4%
W 90 + PCA 80 + GMM 64 46.22 ± 12.4% 51.04 ± 13.1% 51.56 ± 17.1%

W 90 + PCA 256 + GMM 32 45.21 ± 17.4% 52.86 ± 15.4%52.86 ± 15.4%52.86 ± 15.4% 51.86 ± 15.6%
W 90 + PCA 256 + GMM 64 46.22 ± 13.2% 51.03 ± 13.3% 51.56 ± 14.8%

W 60 + PCA 80 + GMM 32 43.51 ± 14.9% 50.98 ± 16.2% 48.66 ± 17.3%
W 60 + PCA 80 + GMM 64 43.24 ± 16.9% 47.34 ± 13.2% 44.69 ± 16.8%

W 60 + PCA 256 + GMM 32 46.30 ± 14.4% 48.07 ± 14.5% 47.66 ± 15.1%
W 60 + PCA 256 + GMM 64 45.73 ± 16.1% 46.81 ± 14.6% 45.53 ± 16.7%

Table 3 Activity recognition results for MBH descriptor

Model comparison (mAP%) for MBH descriptor

SVM NN1 NN2

W 90 + PCA 80 + GMM 32 41.06 ± 14.9% 52.96 ± 13.3% 53.88 ± 15.6%
W 90 + PCA 80 + GMM 64 39.89 ± 15.2% 49.16 ± 16.3% 51.23 ± 14.3%

W 90 + PCA 256 + GMM 32 41.34 ± 14.1% 53.12 ± 14.7% 50.02 ± 15.9%
W 90 + PCA 256 + GMM 64 43.61 ± 15.6% 54.88 ± 12.5% 50.25 ± 16.1%

W 60 + PCA 80 + GMM 32 49.37 ± 15.4% 57.09 ± 13.8% 54.57 ± 14.8%
W 60 + PCA 80 + GMM 64 47.17 ± 15.1% 52.60 ± 14.2% 50.93 ± 15.6%

W 60 + PCA 256 + GMM 32 45.62 ± 16.6% 57.14 ± 15.7%57.14 ± 15.7%57.14 ± 15.7% 55.58 ± 13.9%
W 60 + PCA 256 + GMM 64 42.43 ± 16.4% 50.91 ± 15.8% 50.24 ± 15.5%

As shown, choosing 256 components in PCA results in performance boost
when combined with a larger temporal window. Choosing 80 components re-
sulted in better performance in some cases of the shorter temporal window.
However, as shown later, those two thresholds are limiting and more PCA
or RP components lead to better performance overall. Increasing the size of
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the GMM vocabulary from 32 to 64 failed to improve our results, especially
when using the shorter temporal window. This proves that using a smaller
vocabulary consisting of 32 words is enough to get good coverage of the most
discriminant micro-actions of the entire dataset. Finally, we can see that the
MBH descriptor almost entirely outperformed the HOF descriptor for every
experiment with a temporal window of 60 frames and that the performance
of the two was comparable for a window of 90 frames. This is an indication
the MBH has to offer more when micro-action extraction is more refined in
time. Overall, the best models came from the combination of 256 PCA com-
ponents coupled with a GMM vocabulary of size 32 and the neural network
architecture with the most learnable parameters (NN1).

4.4 Dimensionality Reduction

In this section, we keep the best models’ parameters fixed, e.g. GMM vocab-
ulary of size 32 and the NN1 classifier, and experiment upon using different
dimensionality reduction techniques, for all the different descriptors and win-
dow sizes. The same evaluation scheme is also applied in this section as well,
i.e. leave-one-person-out cross validation.

First we investigate selecting 1000 PCA components instead of 80 and 256,
in order to explore the capabilities of our method for higher dimensional micro-
action vectors. When reducing from some thousand components to only 256 it
is possible that only a small portion of the dataset variance can be explained,
thus the reduction step can become a bottleneck to the overall performance.
In Table 4 the results indeed show significant improvement in performance for
all settings, ranging from 3% to 5% mAP.

However, as discussed earlier PCA is rather expensive to compute mainly
during training time for high dimensional data. Especially in our case, the
micro-action descriptors, depending on the setting, are at least 30720-dimensional
and up to 92160-dimensional vectors before the reduction stage. For those rea-
sons, we chose to experiment with RP using 4 different settings: d = 1000,
d = 2500, d = 3500 and d = 5000. Table 5 shows the results. We can see
that with Random Projections close to 3500 components, the method scores
either comparably or surpasses PCA’s lower component settings (80, 256).
Considering, all RP experiments took lesser time to produce, there exists a
performance/speed trade-off when choosing one or the other during training.
For full performance gain, it is evident that the 1000 PCA component setting
is the ideal one.

4.5 Motion Compensation

Heavy ego-motion may appear between video frames of the ADL Dataset, as
a result of the person moving around while performing the actions. As such,
the real movement of objects may be overpowered by camera motion. We have
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Table 4 Performance comparison with increased number of PCA components.

Performance (mAP%)
PCA components MBH MBH HOF HOF

W90 W60 W90 W60

80 52.9 ± 13.3% 57.1 ± 13.8% 52.4 ± 16.3% 50.9 ± 16.2%
256 53.1 ± 14.7% 57.1 ± 15.7% 52.8 ± 15.4% 48.1 ± 14.5%
1000 58.9 ± 15.1% 60.1 ± 14.6%60.1 ± 14.6%60.1 ± 14.6% 56.8 ± 15.6%56.8 ± 15.6%56.8 ± 15.6% 54.9 ± 13.2%

Table 5 Performance comparison for Random Projection.

Performance (mAP%)
RP components MBH MBH HOF HOF

W90 W60 W90 W60

1000 51.1 ± 16.7% 54.5 ± 17.9% 50.3 ± 15.2% 49.6 ± 15.9%
2500 54.2 ± 17.1% 54.9 ± 16.4% 52.1 ± 18.2% 50.6 ± 15.8%
3500 54.3 ± 13.5% 55.9 ± 15.3% 52.3 ± 16.6% 51.8 ± 16.2%
5000 55.4 ± 15.4% 56.7 ± 18.1% 53.7 ± 15.7% 53.1 ± 16.4%

already established the MBH descriptor as the best choice over HOF for activ-
ity recognition on the ADL dataset and the hyper-parameters that lead to the
best performance. In this section, we apply an ego-motion compensation tech-
nique before the calculation of the descriptors, so as to determine its impact
on the overall performance.

Having already computed the dense optical flow field, we select randomly
1000 points in the image and their displacement vectors and feed them to a
RANSAC estimator of a projective transformation (3 × 3 homography) be-
tween consecutive frames. Then, the set of inlier samples can determine the
camera displacement. We take the mean displacement of the inlier samples in
each direction (x and y) and subtract it from the optical flow field. Then, the
compensated optical flow field is used to calculate compensated versions of
HOF and MBH descriptors. The performance comparison of the ego-motion
compensated versions of our best performing HOF and MBH descriptors is
shown in Table6. The impact of motion compensation upon the HOF descrip-
tor is positive, and yields an additional performance improvement of 1.5%
mAP. However, it still cannot surpass the best performing MBH descriptor.
Contrariwise, a slight drop of performance on the compensated MBH indicates
that it may not benefit from the use of motion compensation.

Table 6 Performance comparison using motion compensation.

Performance (mAP%)
no compensation with compensation

HOF (W 90 + PCA 1000) 56.8 ± 15.6% 58.3 ± 15.7%58.3 ± 15.7%58.3 ± 15.7%
MBH (W 60 + PCA 1000) 60.1 ± 14.6%60.1 ± 14.6%60.1 ± 14.6% 58.5 ± 15.1%
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4.6 Comparison with State-of-the-Art

In Table 7, we compared the accuracy rates of our best models, namely HOF
and MBH variants with 32 GMM words and 1000 PCA components, to the
ones that are mentioned in the literature. As already mentioned, we followed
the evaluation procedure in [57], in order to present comparable results. As
we can see, the MBH version of our method outperformed every other. The
motion compensated HOF descriptor is also highly ranked.

Table 7 Comparison with SoA on the ADL Dataset

Method Performance (mAP%)

Boost-RSTP [34] 33.7%
Boost-RSTP + OCC [34] 38.7%

Bag-of-objects [38] 32.7%
Bag-of-objects + Active model [38] 36.9%

Cascaded Interactional Network [57] 55.2%

Ours - Bag-of-Micro-Actions with HOF (best) 58.3%
Ours - Bag-of-Micro-Actions with MBH (best) 60.1%

4.7 Per-Class Evaluation of our Activity Recognition Framework

Next, we select our top two models (one for each descriptor) and train them
for the first 6 videos of the dataset. We present the test set confusion matrices
in Figures 4 and 5. As we can see, MBH performed better than HOF in most
of the classes that heavy camera motion is expected, like the “washing dishes”
or “drinking water” activities, because it simulates a compensated motion
and it proves to be more appropriate when wearable cameras are used. Our
framework is highly dependent on the performance of the object detector, as
expected. The performance drops in instances that involve interactions with
smaller objects, usually in hygiene activities. In addition, activities that involve
the better performing object classes, like “watching tv” or “using computer”,
have higher recognition rates. Confusion seems to exist between the classes
“making tea” and “making coffee” because they almost always involve per-
son interactions with the same object classes. Another similar example is the
confusion created between the “combing hair”, “brushing teeth”, and “dental
floss” classes that are all taking place inside a bathroom with the same objects
being visible from the camera. Hence, the need to directly deal with active vs
passive object recognition is indicated here.

5 Conclusions

In this paper, we introduced a new approach for activity recognition from
wearable cameras by detecting objects and then incorporating their motion
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Fig. 4 Confusion matrix of our activity recognition method with HOF descriptors.

Fig. 5 Confusion matrix of our activity recognition method with MBH descriptors.

patterns into low level micro-action descriptors. We represented activities us-
ing a Bag-of-Micro-Actions schema, using GMM clustering and Fisher vector
encoding. Comparison with SoA techniques on the ADL dataset validate the
competitiveness of our approach.

Our future steps will be to develop an object detection algorithm that dis-
criminates between active and passive objects so as to weight them differently
and to leverage hand movements and include gesture patterns into the over-
all framework. Additionally, we plan to incorporate Deep Neural Networks at
another stage in our framework, so as to replace the Fisher encoding schema
and model temporal dependencies of active object movements using LSTMs.
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Finally, evaluation on newer activity recognition datasets is also a future tar-
get.
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