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Abstract—Stress as a mental/physiological reaction of a person
in a challenging situation of high discomfort can affect his/her
ability to focus and perform fast and accurate decisions. Thus,
stress can be a key factor in cases of emergency, when first
responders need to be fast and accurate. Continuous monitoring
of the stress levels of the first responders can be crucial in cases
of disaster management situations. Wearable devices and phys-
iological sensors provide real-time monitoring of physiological
signals, which can be helpful for real-time stress monitoring. This
work describes the stress detection module of the xR4DRAMA
project and the results of its application during a disaster
management pilot scenario. For this cause, a wearable smart vest
equipped with an electrocardiograph (ECG) sensor, respiration
(RSP) sensor, and an Inertial Measurement Unit (IMU) with an
accelerometer, gyroscope, magnetometer, and quaternion sensors
has been used. An initial data collection was performed to train
the stress detection module, and the trained model was deployed
for real-time stress detection of first responders in the pilot
scenario. The training performed includes a massive feature
extraction from the different modalities, and the test of four
machine learning algorithms and six fusion and three feature
selection techniques. The results of the continuous valued stress
levels detection indicate that the best performing combination is
the eXtreme Gradient Boosting (XGB) algorithm with the use of
a Genetic Algorithm (GA) feature selection technique, achieving
a Mean Square Error (MSE) of 0.0567. Results from the pilot
show that the stress level detection module can operate in real-
time in real life conditions, offering reasonable results regarding
the detected stress levels.

Index Terms—Stress level detection, wearable sensors, smart
vest, multimodal fusion

I. INTRODUCTION

Stress is among the most important problems in our society.
It can be defined as the reaction of a person when being subject
to high discomfort and challenging situations. As stated by
World Health Organisation “Work-related stress is the response
people may have when presented with work demands and
pressures that are not matched to their knowledge and abilities
and which challenge their ability to cope” [1]. Stress can
impact the mental clarity of a person decreasing his ability
of precise and fast decisions. High levels of stress might

also influence person’s performance, even in actions they are
trained to perform. Thus, stress can be considered one of the
most vital aspects of disaster management situations.

Apart from the effects of stress on first responders per-
formance, their exposure to highly stressful events for long
periods can result in serious health problems. Mental health
issues, such as Post-Traumatic Stress Disorder (PTSD) and
major depressive disorder [2], or other physical health prob-
lems, such as sleep disturbances and musculoskeletal problems
[3], are some of the most common health problems induced by
chronic stress. Therefore, monitoring the stress levels of first
responders during emergencies is of crucial importance. Sim-
ulating a disaster management scenario with first responders
or volunteers assists in collecting physiological data and build
models for prediction of stress. Protocols that induce stress
might be adopted or the exact scenario can be reproduced,
such as in [4].

With the development of the Internet of Things (IoT),
smart devices are equipped with many sensors able to monitor
physiological signals and human body motion attributes. Since
stress is a mental/physiological reaction the monitoring of
physiological signals can be considered useful in the task of
stress detection. Also, in many cases, abnormal human body
movements along with certain physiological signal attributes
can be beneficial for stress detection applications. The IoT
advances with the deployment of multiple sensors in wearable
devices and the high computational power of smart devices and
computers can lead to real-time stress detection capabilities.

In the current work, an application of an experimental
design for stress level detection of first responders is described.
The stress level detection module exploits data from a wear-
able smart vest equipped with sensors, designed for this appli-
cation, and predicts the levels of stress as a continuous value,
which is not the case in most stress detection applications,
where only a categorical variable of two or three classes is
typically predicted. The stress detection module was trained
using data collected through an initial data collection, where



subjects underwent various challenges that induce different
levels of stress, and they reported their stress level after each
challenge. The trained stress detection module was deployed
for real-time stress level detection during the pilot scenario,
where subjects had to perform certain tasks simulating a real
flood scenario. These tasks include going to certain areas on
the field and sending incident reports. Since there was no
flood simulation or any other stressor to induce high levels of
stress, the pilot scenario mainly tested the ability of the stress
detection module to perform real-time stress level monitoring
in real life conditions. The current work is an application of
stress detection in a general framework of eXtended Reality
(XR) technologies for disaster management, as part of the
xR4DRAMA project [5], which is a solution that makes use
of XR in disasters, or media production scenarios. The pilot
scenario is part of the first pilot of the project regarding
the disaster management pilot use case, where the need for
real-time stress level monitoring using wearable physiological
sensors is present.

The rest of the paper is organized as follows; in Section 2
state-of-the-art methods for stress detection are presented. In
Section 3 the methods used for the data collection and analysis
are described followed by the results of the experiments in
Section 4 and the conclusion of our work in Section 5.

II. RELATED WORK

The most common stress detection methods based on phys-
iological signals include a feature extraction step derived
from statistical knowledge of the properties of the signals
that attempt to describe the various affective states. The
extracted features are used to train a state-of-the-art machine
learning classifier which eventually learns to detect the stress
levels of the subjects. A more recent approach attempts to
omit the feature extraction step by utilizing a Deep Neural
Network (DNN), which can do the representation learning of
the different affective states directly from the physiological
signals.

Physiological sensors can be exploited separately or in
combination for the task of stress detection. Electrocardiog-
raphy sensors (ECG) are amongst the best performing ones
in predicting stress and are often utilized individually. In
[6] machine learning algorithms were applied on features
extracted from ECG signals to detect stress in drivers. ECG
signals were used in [7] in a simulated stress scenario and
their performance was compared to electromyogram (EMG)
signals. Galvanic Skin Response (GSR) sensors are often
combined with ECG signals and other physiological sensors to
detect stress. Early fusion was used in [8] to combine features
extracted from GSR, Electroencephalogram (EEG) sensor and
Photoplethysmogram (PPG), in order to improve the individual
performance for monitoring stress.

Schmidt et al. [9] created a benchmark for their publicly
available dataset for stress detection using a large number of
well-known features (extracted from physiological and motion
signals) and common machine learning methods (Decision
Tree (DT), Random Forest (RF), AdaBoost (AB), Linear

Discriminant Analysis (LDA) and k-nearest neighbor (kNN)).
The authors validated their methods on a three-class problem
(neutral, stress, amusement) achieving 80.34 % accuracy with
the AB classifier, and on a two-class problem (stress, no stress)
achieving 93.12 % accuracy with the LDA classifier.

Rusell Li et al. [10] proposed a novel Deep Learning (DL)
based method for stress detection, which was trained and
evaluated on the same dataset as [9]. This work attempts
to address the limitation of the handcrafted features that
traditional machine learning methods rely upon and their
potential decrease in accuracy due to the misidentification
of features. The authors designed a novel 1D Convolutional
Neural Network (CNN) and a Multi-Layer Perceptron (MLP)
that take as input the raw physiological signals and do not
require hand-crafted features but instead extract features from
raw data through the layers of the neural networks. The authors
validated their classifiers on both the three and two-class
problems of [9] achieving 97.48 % for the three-class and
99.14 % for the two-class problem.

Sriramprakash et al. [11] proposed a method for detecting
stress during working conditions based on feature extraction
and machine learning. The authors trained and validated their
data on the SWELL-KW dataset [12]. They utilized a set of
17 statistical features derived from ECG and GSR signals and
evaluated which of them are the most dominant to increase
accuracies. They trained a kNN classifier and a Support Vector
Machine (SVM) classifier. The SVM classifier trained on the
dominant selected features achieved the highest classification
accuracy of 92.75 % for the stress vs no-stress classification
task. Another work based on feature extraction and SVM was
reported by Yuan Shi et al. [13]. The authors proposed a
set of 26 handcrafted features derived from ECG, GSR, skin
conductance, temperature and respiration. They reported an 80
% recall over the binary classification of stress vs no stress
problem.

Feng-Tso, et al. [14] extracted statistical features from ECG,
GSR, and accelerometer and trained a DT, Bayesian Network
(BN), and SVM classifier for stress detection inference com-
bined with physical activities (sitting, standing, and walking).
The best classification accuracy (92.4%) was obtained by using
the DT classifier with the all-feature combination.

Keshan et al. [15] proposed an ECG-based feature extraction
scheme for driver stress detection. They trained and evaluated
their data on [16]. They utilized a set of 14 statistical features
derived from ECG signals and found that stress levels can be
successfully detected from ECG signals alone; with a random
tree classifier allowing for the identification of the three classes
of stress, low, medium, and high, with 88.24% accuracy, and
Naive Bayes for two stress levels, low and high, with 100%
accuracy.

In the work of Nath et al. [17] the authors extracted statis-
tical features from GSR and PPG sensors for stress detection
of healthy elders. They utilized the Trier Social Stress Test to
induce stress in the subjects and a fingertip sensor to monitor
physiological signals. The extracted features were fed into a
feature selection algorithm to remove redundant information



before utilizing a machine learning algorithm for the final
stress detection. They tested kNN, RF, and SVM classifiers
along with a deep learning Long Short-Term Memory (LSTM)
based classifier and found out that the LSTM classifier per-
forms the best, achieving 0.87 macro Fl-score, 0.95 micro
Fl-score, and 0.81 AUC.

In all of the previous works, the data were derived from
publicly available datasets. Even though this makes the com-
parison of the different methods easier, since all methods are
based on the same data, this might influence the performance
of the models when deployed in a real-life scenario, where
the sensors will be different. Also, all of the aforementioned
methods are classification methods, with two or three classes.
Our work goes beyond predicting only binary (stress, no
stress) or categorical (low, medium, high) variables by using
regression models to produce continuous values of stress
levels.

III. METHODS
A. Smart vest and sensors

The physiological data were acquired using a sensing plat-
form based on textile sensors fully integrated into a smart vest
and a data logger that can record and process data on board
and transmit them via Bluetooth 2.1.

Furthermore, an Inertial Measurement Unit (IMU) system
is integrated into the data logger, including accelerometer,
gyroscope, magnetometer and quaternion sensors with the
aim of monitoring the movements of the trunk. The Fig. 1
shows the wearable sensing platform in which its features are
presented:

o two textile electrodes to acquire ECG signal

« one textile respiratory (RSP) movement sensor

« one jack connector to plug the garment into the electronic
device

« a pocket to hold the electronic device during the activity

Data logger
and
Jack Connector

Textile respiratory
movement
sensors

ECG Textile Electrodes
(Inner part of garment)

Fig. 1. Wearable sensing platform architecture.

B. Data collection protocol

The data collection is divided into two different protocols;
the training data collection and the pilot scenario. The training
data collection protocol is an experimental design based on
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Fig. 2. The Stroop test

interchanges between stressful challenges and relaxing situ-
ations. The pilot scenario is designed to evaluate an overall
disaster management use case using XR technologies, includ-
ing the real-time stress detection module and all of the other
features of the platform.

1) Training data collection protocol: The training data
collection protocol has been designed to induce stress in
the users followed by calmness. The basis of experimental
design is based on known stressors for both psychological and
physiological stress. The stressors selected, divided into the
two aspects of stress they induce, are the following:

« Psychological:

— The Stroop test. Is a commonly used task to induce
stress [18], in which some slides with certain words
of different color names are presented to each user.
The words are written in different colors than those
they describe (Fig. 2). The user is asked, in a short
period of time, to describe the color in which each
word is written.

— The descending subtraction test. In this also com-
monly used task for inducing stress [19], the user
is asked to begin counting backward from a cer-
tain number, subtracting each time another certain
number. In the context of the training data collection
experiment, the users were asked to begin with the
number 1324, subtracting 17, until 17. If the users
make a mistake, they must start over.

— Explain a stressful situation in your life.

— Explain how it has been the day. This is not a
stressful challenge, but it is used to get low stress
values as well.

— Listen to relaxing music. This task was also used to
get low stress values.

« Physiological:

— Place a hand in cold water (2° C) for two minutes,
make pause, and then place it again.

— Ascend and descend four levels of stairs.

— Tie and untie shoes after exercise.

These different challenges were combined in a different
order each time, to induce various levels of stress, from



calmness to high stress. The users were asked to report their
stress levels as a number from O to 100 after each challenge.
During the whole experiment, the users were wearing the smart
vest to collect their physiological data.

2) Pilot scenario: The pilot scenario of the disaster man-
agement use case of the xR4ADRAMA project was designed
to evaluate the overall disaster management solution of the
project. During the phases of the pilot, the roles of control
room operators, first responders, and citizens were assigned
to the participants. The storyline of the pilot scenario can be
summarized in two different phases; the pre-emergency phase
and the emergency phase.

The pre-emergency phase focuses on the forecasting of
flood incidences. In more detail, the storyline starts with the
reception of an official warning message by the municipality of
Vicenza, dealing with the worsening of safety conditions along
the Bacchiglione river. Since the stress detection module is not
involved in this phase there is no need for further analyzing
the design of the certain phase.

During the emergency phase, the first responders are asked
to perform certain tasks from the control room. These tasks
include sending incident reports to signal the authorities that
there were flooding events in various areas of the city center.
For the whole time of the emergency phase, the first responders
were wearing the smart vest to monitor their stress levels in
real time. There was no simulation of flood events during the
experiment, thus the first responders did not experience any
certain stressor that could induce high levels of stress.

C. Data analysis

The data analysis is referring to extraction of features from
the received data and the training of the different machine
learning algorithms and the different fusion and feature selec-
tion techniques. The best performing method was selected to
be implemented for the disaster management pilot scenario.

After receiving the data from the training data collection,
we performed a data analysis involving preprocessing of the
data and feature extraction. The preprocessing of the data
involves only simple transformation of the data by multiplying
them with certain weights. Feature extraction was applied to
all the preprocessed data. The features were extracted using
a 60-second window with 50% overlap. We used the data
of all subjects that were monitored. In total 94 ECG, 28
RSP, and 192 IMU (16 per single-axis data) features were
extracted for a total of 314 features. The ECG features include
statistical and frequency features regarding the signal and the
R-R (the physiological phenomenon of variation in the time
interval between heartbeats) intervals, along with Heart Rate
(HR) variability time and frequency domain statistical features.
For the ECG features, we used the hrv-analysis [20] and
the neurokit [21] toolboxes. The respiration features include
statistical and frequency features of the signal, breathing rate,
respiratory rate variability, and breath-to-breath intervals. The
respiration features were also extracted using the neurokit
toolbox [21]. The IMU features include simple statistical
and frequency features from the IMU signals. These features

are mean, median, standard deviation, variance, maximum
value, minimum value, interquartile range, skewness, kurtosis,
entropy, energy, and 5 dominant frequencies.

For the ground truth values, the self-reported stress levels
of the users refer to the whole challenge they performed right
before they were asked to report their stress. Thus, each of
the 60-second time windows used for the feature extraction
was assigned the stress value the user reported for the whole
challenge that took place at the certain window. The ground
truth values were integer values in the range of 0 to 100.

After extracting the features, the data were split into train
and test with an 80/20 ratio. We applied four different ML al-
gorithms; namely SVM, k-Nearest Neighbors (kNN), RF, and
eXtreme Gradient Boosting trees (XGB) to perform regression
of the stress level since the stress level is a continuous variable.
The evaluation was performed using the Mean Squared Error
(MSE) metric and 10-fold cross validation. Before computing
the MSE we normalized the values of stress level to be
in the range of 0 to 1. We tested each modality alone,
all different combinations of modalities in early-level fusion
(concatenation) and two late-level fusion methods: mean and
median of the predicted stress level of each modality. We
also tested the performance of three different feature selection
algorithms, those being Recursive Feature Elimination (RFE),
Principal Component Analysis (PCA), and Genetic Algorithm
(GA).

IV. RESULTS

In this Section, the main results of our work are presented.
First, the training data collection’s main results are presented,
including the different early and late fusion and feature selec-
tion methods. Following are the results of the pilot scenario,
including the real-time outcomes of the stress detection mod-
ule during the disaster management pilot scenario.

A. Training data collection

For the training data collection, seven subjects (4 female,
age: 40+7.78) participated, each one performing a series
of challenges as described above. The results from all the
different fusion methods tested are presented in Table I. From
the Table, it can be seen that the IMU modality performs better
than the ECG and RSP modalities when used alone. Also,
when combining only two of the three different modalities
it can be seen that when the IMU modality is used, the
results are better. Since IMU sensors are typically used for
activity recognition, this might indicate that along all the
users, the physiological stressors, which include more specific
movements, might have a larger influence on the users’ stress
levels. The best performing method of all the different tested
methods is the early fusion of all the modalities while using
the XGB classifier, achieving an MSE score of 0.073.

Since the best performing fusion method was the early
fusion of all the modalities, we tested the different feature
selection methods on the concatenated feature set of all the
different modalities. In Table II the results from the different
feature selection methods are presented. All the different



TABLE I
MSE RESULTS OF THE DIFFERENT FUSION TECHNIQUES WITH ALL FOUR DIFFERENT REGRESSORS.

ECG RSP MU ECG + RSP | ECG + IMU | RSP + IMU | ECG + RSP + IMU | Late mean | Late median
SVM | 0.1709 | 0.1530 | 0.1305 0.1723 0.1306 0.1305 0.1305 0.1412 0.1363
kNN | 0.1439 | 0.1553 | 0.1107 0.1285 0.1106 0.1106 0.1107 0.1170 0.1125
RF 0.1113 | 0.1280 | 0.0918 0.1073 0.0916 0.0871 0.0886 0.0984 0.1025
XGB | 0.1237 | 0.1307 | 0.0844 0.1092 0.0835 0.0858 0.0730 0.0958 0.1006

feature selection algorithms improve the overall performance
of the different classifiers, nevertheless the GA feature selec-
tion algorithm when again applied with the XGB regressor
performs the best, achieving an MSE score of 0.0567. All the
feature selection methods retained features from all modalities.

TABLE 11
MSE RESULTS OF THE DIFFERENT FEATURE SELECTION TECHNIQUES
WITH ALL FOUR DIFFERENT REGRESSORS.

RFE PCA GA
SVM | 0.1052 | 0.1201 | 0.1305
kNN | 0.1023 | 0.1106 | 0.1106
RF 0.0790 | 0.1044 | 0.0742
XGB | 0.0772 | 0.0953 | 0.0567

Since in all cases the XGB classifier achieves the best
results, it is important to see how the feature selection method
improves the overall performance of the stress detection
module. In Fig. 3 we present concatenation and GA feature
selection results along with the ground truth values in each
subfigure respectively. From the figure, it can be seen that the
use of GA feature selection improves the overall performance
of the XGB regressor, by minimizing the error between the
ground truth values and the predictions.

Fig. 3. Plot of the ground truth stress levels reported versus the predicted
stress levels using the XGB regressor with and without the use of GA feature
selection technique

B. Disaster management pilot scenario

For the pilot, we trained an XGB model using a GA
feature selection, since it was the best performing method
for stress detection. The model was deployed for real-time
stress detection using the data from the smart vest. Four
different subjects were participating, having the role of the
first responder and performing tasks on the field, as described
above. Each subject was wearing a smart vest during the whole
experiment.

Data from the smart vest were streamed while the users were
following the instruction given to them for the pilot scenario.

The streamed data are packed in 5-second packages before
being sent to the stress detection module. The streamed data
were received from the stress detection module, which stacks
them until a full minute of data is collected, and then the
feature extraction, feature selection, and final stress detection
process are taking place. Therefore a 1 min long time window
with 5 seconds step is applied. The full procedure can be
seen in Fig. 4, where the stack of the 5-second packages of
data along with the main stress detection process including
feature extraction, feature selection, and stress detection, are
presented.

12 5-second packages
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Fig. 4. Workflow of the stress detection module during the pilot.

The results from the pilot can be seen in Fig. 5. Each one of
the four different subfigures presents the results of a different
user. Knowing that the users during the pilot were performing
simple tasks, their stress levels are reasonable to be in a range
from 40 to 60. From the Figure, it can be seen that the stress
levels are at a medium level indicating that users were calm,
which is reasonable considering the tasks they were asked to
perform.

V. CONCLUSION

In this paper, we present a solution for real-time stress
level detection based on sensors in the general context of XR
technologies for disaster management. This work focuses on
the training of the sensor-based stress level detection module
from data gathered during a training data collection, and
its implementation into a real-life disaster management pilot
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Fig. 5. Stress level results of the stress detection module (x-axis) from data
from the pilot over time (y-axis) for each subject.

scenario. The sensor-based stress level detection module is
based on data gathered from a smart vest developed for the
current application consisting of an ECG sensor, an RSP
sensor, and an IMU system with 3-axis accelerometer, gy-
roscope, magnetometer and quaternion sensors. Data gathered
from these sensors are analyzed in order to extract features
that are fed into a trained model for the final continuous-
valued stress level detection. From the results of the evaluation
study, where multiple fusion and feature selection methods
were tested using four different machine learning algorithms,
it was revealed that the best performing combination was the
use of XGB regressor along with GA-based feature selection
method, achieving 0.0567 MSE. We retrained the XGB model
with the feature sub-set selected from the GA-based feature
selection method, and deployed it into a real-world disaster
management pilot scenario. Results from four subjects serving
as first responders in this pilot scenario indicate that our
model works reasonable even in real-life conditions and in
real-time. Future work includes performing a second disaster
management pilot scenario in the context of the xXR4ADRAMA
project, where a more well defined protocol to induce stress
will be implemented. Also in this pilot scenario, the sensor
based stress level detection system will be tested alone and
in combination with the predicted stress of an audio-based
system, through the fusion module of the xR4DRAMA project.
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