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ABSTRACT
This paper presents a novel method for supporting multiple modal-
ities in the field of image retrieval, called Multimodal Bayesian
Supervised Hashing (MuseHash). The method takes into consid-
eration the semantic information of the training data through the
use of Bayesian regression to estimate the semantic probabilities
and statistical properties in the retrieval process. This method is
an extension of the previously proposed Bayesian ridge-based Se-
mantic Preserving Hashing (BiasHash) method. Experimentation
on various domain-specific and benchmark datasets demonstrates
that MuseHash outperforms six existing state-of-the-art methods
in image retrieval performance, regardless of the feature extractor
type, code length, and visual or textual descriptors used. This high-
lights the robustness and adaptability of MuseHash, making it a
promising solution for multimodal image retrieval.

CCS CONCEPTS
• Information systems → Information retrieval; • Comput-
ing methodologies → Supervised Learning; • Mathematics of
computing → Probability and statistics.
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Supervised Hashing, Bayesian Ridge Regression, Late fusion, Cross-
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Figure 1: Image retrieval.

1 INTRODUCTION
With the rapid development of the Internet and mobile devices,
multimedia data collections have seen explosive growth. Not only
are there larger general collections, with a variety of media types,
but also a larger variety of specialised collections. Early collec-
tion genres included medical images and art collections, which
are well studied in the literature [1, 13, 29], and satellite image
collections which have been gaining attention [16–18], but more re-
cent and less-studied genres include underwater [26, 31] and aerial
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footage [14, 22]. Furthermore, due to (a) media capture devices
providing robust metadata and (b) improvements in automatically
generatedmedia annotations, the number of availablemediamodali-
ties has also grown. These different modalities can provide semantic
correlations, which may be used to support semantically-relevant
results of all modalities in response to a unimodal query, such as a
visual example or a textual description.

Image retrieval, in particular, has attracted interest among re-
searchers frommany fields, including image processing, multimedia
retrieval, and computer vision. Modern image retrieval requires a
representation for eachmodality, fusing the differentmodalities into
a common representation, sorting the collection items and return-
ing the items most relevant to the query, as shown in Figure 1. Due
to the large volume of the collections and the semantic gap between
the digital representation and human perception [28], effective re-
trieval of multimodal data remains a challenge. Hashing methods,
including deep hashing methods, have recently been widely used
to represent media modalities for similarity search in multimedia,
due to their low memory requirements and efficient comparison.
In this paper, we therefore focus on hashing methods, particularly
aiming to minimise the aforementioned semantic gap of data from
different modalities. Hashing approaches are distinguished into
single-view [6, 27] and multi-view approaches [4, 11, 20, 21, 23, 35–
37]. The former approaches can only handle one modality, while
the latter approaches support two or more modalities. In addi-
tion, they can categorised into unsupervised [6, 11, 37] and su-
pervised [4, 15, 20, 21, 23, 27, 35, 36] depending on the method of
learning hash functions. In general, supervised methods can take
more advantage of the inner relationships of data from annotation
and due to that they perform better than unsupervised methods.
Therefore we emphasise on supervised methods. Although there is
thus a plethora of hashing methods for image representation, there
is no method in the literature that can universally combine many
modalities for both the collection and query.

Recent works have applied Bayesian frameworks [27, 35] to
supervised single-view hashing, by adding both a measure of un-
certainty and weight regularisation to their predictions. The Bi-
asHash method proposed in [27] was shown to outperform state-
of-the-art single-view approaches. In this paper, we extend the
BiasHash approach to a multi-view approach, MuseHash, which
applies Bayesian regression per modality, uses the sign of the pro-
duced Bayesian feature values for binary codes’ generation, and
fuses the hash-codes into a complete image representation.

The main contributions of this paper are summarised as follows:

• WeproposeMuseHash, a novelmultimodal Bayesian hashing
approach for efficient cross-modal retrieval.

• We validate the effectiveness of our proposed approach using
five benchmark datasets from three different genres, includ-
ing underwater and aerial video footage. To the best of our
knowledge, this is the first time these two genres have been
explored in the image retrieval context.

• In an ablation study, we explore the influence of various pa-
rameters, such as training size and visual feature descriptors,
on the performance of the MuseHash approach.

The remainder of this paper is structured as follows. Section 2
examines the relevant state of the art, while Section 3 technically

describes the proposed MuseHash approach. Experimental results
are presented in Section 4 and the paper concludes with a brief
summary in Section 5.

2 RELATEDWORK
Various multimodal hashing methods have been proposed for image
retrieval. In this section, we discuss state-of-the-art unsupervised
and supervised methods from the literature.

Unsupervised hashing methods usually learn hash functions
from data distribution in order to preserve the structures of train-
ing data. SelfTaught Hashing (STH) [37] finds the optimal 𝑙-bit
binary codes for all documents in the given corpus via unsuper-
vised learning, and then trains 𝑙 classifiers via supervised learning
to predict the 𝑙-bit code for any query.

Unsupervised Deep Hashing with Pseudo Labels (UDHPL) [11]
generates the pseudo-labels through the Bayes’ rule and maximizes
the correlation between the projection vectors of pseudo-labels and
deep features. Lightweight Augmented Graph Network Hashing
(LAGNH) [6] uses a lightweight deep learning network with the as-
sistance of the auxiliary semantics, which significantly reduces the
number of parameters of the network and accelerates the training
process.

Supervised methods, on the other hand, learn hash functions
using supervised information, and generally outperform unsu-
pervised methods. Self-Supervised Adversarial Hashing Network
(SSAH) [15] incorporates a self-supervised semantic network cou-
pled with multi-label information, and carries out adversarial learn-
ing to maximize the semantic relevance and feature distribution
consistency between different modalities. Fast Cross-Modal Hash-
ing (FCMH) [35] introduces an auxiliary variable to approximate the
binary code so that the binary code can be optimized by minimizing
the quantization error.

There are also supervised methods that adapt adversarial learn-
ing or transfer knowledge. Generalized Semantic Preserving Hash-
ing (GSPH) [23] learns the optimum hash codes for the two modali-
ties simultaneously, and then learns the hash functions to map from
the features to the hash codes. Matrix Tri-Factorization Hashing
Framework (MTHF) [21] aims to transfer knowledge from single-
modal source domain to cross-modal target domain for promoting
cross-modal retrieval.

Some supervised methods use deep learning networks (like,
CNN) for feature learning and hash function learning. Deep Cauchy
Hashing (DCH) [4] inserts Cauchy cross-entropy loss and a Cauchy
quantization loss based on Cauchy distribution into the network for
learning compact and concentrated hash code for image retrieval.
Label-Attended Hashing (LAH) [36] separately generates the image
representation and label co-occurrence embeddings, and also learns
hash functions following a Cauchy distribution approach.

Other supervised methods use similarity matrix for semantic
information. Semantic Preserving Hashing (SePH) [20] generates
one unified hash code for all observed views of any instance by
transforming the given semantic affinities of training data into a
probability distribution. This is done with the use of kernel logistic
regression for minimizing their Kullback-Leibler divergence [9]. A
recent supervised hashing method, Bayesian Ridge-based Semantic
Preserving Hashing (BiasHash) [27], has been proposed for image
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retrieval. It inserts a Bayesian framework for learning hash func-
tions and considers that the choice of the training data does not
affect the performance of the method.

The state-of-the-art hashing approaches for image representa-
tion are limited to handling only two modalities due to limited
datasets with more modalities and inability to handle complex re-
lationships. This failure to address multimodal data and queries
inspired us to propose a Bayesian-based supervised framework for
multimodal retrieval. Our approach combines multiple modalities
and outperforms existing state-of-the-art supervised methods. Ad-
ditionally, our method can be adapted to handle various types of
data, such as underwater or aerial visual information. This makes
our approach more versatile and applicable to a wider range of
data.

3 METHODOLOGY
Figure 2 illustrates an overview of the proposed MuseHash frame-
work. The framework consists of an offline training phase, where
the hash functions are first learned and then applied to the retrieval
collection, and an online querying phase, where the learned hash
functions are used for query images. The structure of the feature
extraction and the learnt hash functions are shared between the
phases, as represented with orange color in the figure.

In the offline training phase, MuseHash uses the training labels
to create an affinity matrix, find semantic probabilities, and map
them to Hamming space. It also extracts features from each image
in the training set and uses them to learn hash functions for each
modality (like visual or textual) through Bayesian ridge regression.
These hash functions are then applied to all images in the retrieval
set, creating hash codes that are stored in a database for later use.

In the online quering phase, MuseHash extracts the features of
each existing modality of the query image and computes hash codes
using the respective learnt hash functions. These hash codes are
then fused into a single feature vector, which is used to query the
database of hash codes. Finally, the results are ranked and the top
𝑘 relevant results are returned.

In the remainder of this section, we present the proposed method
in detail. We start by defining the notation used in the presentation
(Section 3.1). Since MuseHash extends the BiasHash approach to
multiple modalities, we then review the BiasHash method for the
single-modality case (Section 3.2), before describing the MuseHash
approach to the multi-modality case (Section 3.3).

3.1 Notation
Let I be the training set of size |I | = 𝑛, with 𝐼𝑖 its 𝑖-th instance. We
define 𝐿 ∈ {0, 1}𝑛×𝑙 as the ground truth labels (typically semanti-
cally derived) of the training set, used for the supervised learning
process. We define 𝑋𝑚 ∈ R𝑛×𝑑𝑚 as the feature vectors from the
𝑚-th modality, where each vector is of dimensionality 𝑑𝑚 . Each
training set instance 𝐼𝑖 thus consists of an𝑀-tuple of feature vectors
(𝑋 1, 𝑋 2, . . . , 𝑋𝑀 ) and the ground truth label vector 𝐿𝑖,. .

Let 𝐴 ∈ [0, 1]𝑛×𝑛 be the affinity matrix and 𝐻 ∈ {0, 1}𝑛×𝑑𝑐 the
learnt hash codes of the training set, where 𝑑𝑐 is the number of bits
in the hash codes. Each instance of 𝐻𝑖,. then corresponds to the
projection of each training set instance 𝐼𝑖 . We denote with 𝑈𝑀 the
set of learnt hash functions for the𝑀 modalities, and𝑢𝑘𝑚 ∈ R𝑑𝑚 the

learnt hash function of𝑚-th modality and 𝑘-th bit, for 1 ≤ 𝑘 ≤ 𝑑𝑐 .
Let 𝑐𝑚 ∈ {0, 1}𝑑𝑐 be the hash code of the𝑚-th modality and 𝑐𝑚

𝑘
its

𝑘-th bit, for 1 ≤ 𝑘 ≤ 𝑑𝑐 . In BiasHash, the hash code 𝑐1 of the single
modality𝑋 1 is stored directly in the collection, while for MuseHash
the hash codes (𝑐1, 𝑐2, . . . , 𝑐𝑀 ) for all 𝑀 modalities are fused into
a single feature vector, as described below. In BiasHash, the hash
code𝐻𝑞 of a given query 𝑞 can be computed by𝐻𝑞 = 𝑠𝑖𝑔𝑛(𝑢1 •𝑋 1),
where the operator • is the inner product between vectors. while
MuseHash uses the same equation for each modality.

3.2 BiasHash
As the proposed MuseHash method builds on BiasHash, as men-
tioned above, we describe the BiasHash method here, and then
outline the differences in Section 3.3. BiasHash is a single-modality
hashing approach (𝑀 = 1, in the notation above), based on applying
Bayesian regression for projecting the semantic relationships of
data into Hamming space.

The BiasHash computes the affinity matrix of training set using
the ground truth labels for items 𝐼𝑖 and 𝐼 𝑗 by:

𝐴𝑖, 𝑗 =
< 𝐿𝑖,., 𝐿𝑗,. >

| |𝐿𝑖,. | | | |𝐿𝑗,. | |
(1)

where < ., . > is the dot-product of two vectors. Then the probabili-
ties in semantic space P are computed by:

𝑝𝑖, 𝑗 =
𝐴𝑖, 𝑗∑𝑛

𝑖=1
∑𝑛

𝑗=1, 𝑗≠𝑖 𝐴𝑖, 𝑗
(2)

The corresponding semantic probabilities 𝑞𝑖, 𝑗 of instances in
Hamming space Q can be derived using the work of van der Maaten
and Hinton [33] for t-distribution and the work for Kullback-Leibler
divergence [9] to measure the differences between Q and P. Due
to its NP-hardness [24], the problem is relaxed to:

Ψ = min
�̂� ∈R𝑛×𝑑𝑐

𝑛∑︁
𝑠=1

𝑛∑︁
𝑡=1,𝑠≠𝑡

𝑝𝑠,𝑡 𝑙𝑜𝑔
𝑝𝑠,𝑡

𝑞𝑠,𝑡
+ 𝑎

𝐶
| | |�̂� | − 𝐼 | |22

with 𝑞𝑠,𝑡 =
(1 + ||�̂�𝑠,. − �̂�𝑡,. | |22)

−1∑𝑛
𝑘=1

∑𝑛
𝑚=1,𝑚≠𝑘

(1 + ||�̂�𝑘,. − �̂�𝑚,. | |22)−1

(3)

where Ψ is the minimization problem, 𝑎 is a model parameter for
weighting quantization loss and𝐶 = 𝑛×𝑑𝑐 is a normalization factor
for the hash code length and the training set size. BiasHash uses
gradient descent [30] to find �̂� for that purpose and computes a
Hamming space matrix𝐻 = 𝑠𝑖𝑔𝑛(�̂� ). Next, BiasHash uses Bayesian
regression [25, 32] to learn the hash function 𝑢1 that projects the
visual feature 𝑋 1 to hash code 𝑐1. The hash code is stored in the
database, while the learn hash functions are stored outside the
database.

For a given query 𝑞, BiasHash computes its hash code 𝐻𝑞 and
sorts the retrieval set based on the Hamming distance between the
bits of 𝐻𝑞 and 𝐻𝑖 , ., in ascending order using:

ℎ(𝐻𝑞, 𝐻𝑖 , .) = 𝑏𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 (𝐻𝑞 ⊕ 𝐻𝑖 , .) (4)

where ⊕ denotes the XOR operation between the bits of 𝐻𝑞 and
𝐻𝑖 , ., and 𝑏𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 counts the number of 1s in the binary XOR
result. Finally, BiasHash returns the top𝑘 elements from the ordered
retrieval set.

2023-04-03 12:52. Page 3 of 1–9.
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Figure 2: Overview of the proposed multimodal indexing and retrieval method.

Table 1: Five benchmark datasets used in experiments.

Dataset Ground Truth Labels Modalities Collection Size Retrieval Set Size Training Set Size Test Set Size

Image Text Time Location

AU-AIR 8 32283 32183 2000 100
MarDCT 24 6743 6043 1064 350
SeaDronesSee 6 5630 5249 2113 381
MIRFlickr25K 24 18357 15357 3000 2000
NUS-WIDE 10 186577 184477 4000 2100

3.3 MuseHash
In the proposed MuseHash framework, each image in the training
set contains an 𝑀-tuple of different feature vectors, along with the
ground truth labels 𝐿. Inspired by the work of [19], and as already
mentioned in Section 2, MuseHash is a Bayesian-based supervised
method for image retrieval, which can be applied for any number
of modalities. Since queries are often posed using a single modality,
however, the proposed scheme is designed to handle unimodal
queries.

For each available modality𝑚, a feature vector 𝑋𝑚 is used. For
each feature vector, the corresponding hash function 𝑢𝑚 is learnt
using Bayesian regression using the same approach as in BiasHash.
For each image in the retrieval set, the corresponding hash codes
are then fused into a single unified hash code:

𝐶𝑖 = 𝑓 (𝐻𝑖,1, 𝐻𝑖,2, . . . , 𝐻𝑖,𝑀 ) =
𝑠=𝑀∑︁
𝑠=1

𝑡=𝑀∑︁
𝑡=1

𝐻𝑖,𝑡 ⊕ 𝐻𝑖,𝑠 (5)

where ⊕ denotes the XOR operation between the hash codes through
all binary codes. To increase flexibility during query processing,

the hash codes for each modality are stored in the database, while
the combined hash code for all modalities is computed on the fly.

For a given query, the method again computes the hash code of
each existing modality 𝑐𝑚 using the corresponding hash function
𝑢𝑀 , and fuses the resulting hash codes into a single feature vector
𝐶𝑞 . The retrieval set is then sorted based on the Euclidean distance
between 𝐶𝑞 and 𝐶𝑖 , in ascending order, and returns the top 𝑘 items
of the ordered retrieval set.

4 EXPERIMENTS
In this section, we first describe the datasets used for evaluation
and the experimental setup. We then show detailed experimental
results for a variety of modalities and hash code lengths, explore
different visual and textual descriptors and discuss the training and
testing time of the methods.

4.1 Datasets
We use for our experiments datasets of different types. Specifi-
cally, one aerial dataset (AU-AIR [3]), two underwater datasets

2023-04-03 12:52. Page 4 of 1–9.
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(MarDCT [2], SeaDronesSee [34]) and two traditional benchmark
datasets from the literature (MIRFlickr25K [12], NUS-WIDE [5]).

AU-AIR The AU-AIR dataset is a collection of 8 video clips
recorded for aerial traffic surveillance at a specific inter-
section in Aarhus, Denmark. The footage was taken on
windless days to eliminate any disturbance caused by wind.
The video clips capture various lighting conditions such as
sunny, partly sunny, and cloudy weather, due to the time of
the day and the weather conditions. The videos have been
recorded at 30 frames per second (fps) and have a resolution
of 1920x1080 pixels. To prevent the redundant occurrence of
frames, the dataset consists of five frames per second, result-
ing in 32,823 frames in total. These frames were extracted
from the raw videos.

MarDCT The MarDCT (Maritime Detection Classification and
Tracking) benchmark is a dataset that was acquired through
the use of the ARGOS system. The ARGOS system has been
operating in Venice, Italy since 2006 and includes 14 survey
cells that cover the entire Grand Canal of Venice. The system
is capable of automatically extracting up to 2,000 snapshots
of boats per day for each cell. The dataset is particularly
challenging due to the high variability of boats navigating in
Venice, whichmakes recognition and classification tasks diffi-
cult even for humans. The data sets were generated by using
an automatic acquisition procedure that extracts snapshots
of boats by using the detection and tracking functionality of
the ARGOS system.

SeaDronesSee The SeaDronesSee is a large-scale data set of
people in open water captured using various UAVs and cam-
eras. The dataset contains videos and images of swimming
probands, and is particularly useful for Search and Rescue
(SAR) missions. The RGB footage in the dataset has high
resolution, ranging from 3840×2160px to 5456×3632px, to
enable detection and tracking of objects from a large distance.
The data is carefully annotated with ground-truth bound-
ing box labels for objects of interest, including swimmers,
floaters (swimmers with life jackets), life jackets, swimmers
on boats not wearing life jackets, floaters on boats wearing
life jackets, and boats.

MIRFlickr25K The MIRFlickr25K dataset is a collection of
25,000 images and their associated textual tags, sourced from
Flickr. The images are manually annotated with 24 unique
labels. To prepare the dataset for use, the textual tags that
appear less than 20 times are removed, and any instances
that do not have both textual tags and manually annotated
labels are also removed.

NUS-WIDE The NUS-WIDE database is a collection of 269,648
images and their associated tags, sourced from the web. The
images are manually annotated with one or more of 81 con-
cepts. For the purpose of this study, the ten most frequent
concepts are selected and the corresponding 186,577 images
are kept for the experimental analysis.

The dataset size, number of labels and available modalities are
summarized in Table 1. The symbols " " and " " denote the ex-
istence or not of the specific modality in the dataset, respectively.
The dataset was split randomly into testing and retrieval set. From

the retrieval set we choose randomly some elements based on Table
1 to form the training set.

We use the notation𝑉 ,𝐴,𝑇 and 𝑆 for visual, textual annotations,
temporal and spatial modality, respectively. The notation 𝑄 → 𝐷𝐵

corresponds to the query modality (𝑄) and the database modal-
ity (𝐷𝐵). The letter 𝑄 represents a generic query modality and is
part of the set of modalities represented by 𝑉 ,𝐴,𝑇 , 𝑆, 𝑀 , where𝑀
represents all existing modalities combined.

In our experiments, the fourmodalities were encoded into feature
vectors as follows. For the visual modality (𝑉 ) we use a 2048-D
vector from the fc-7 layer of ResNet50 [10] pre-trained network
on ImageNet. For text annotations (𝐴), we used the BERT1 model
for extracting a 1024-D vector. Each location corresponds to a 2-D
vector (𝑆) with values (altitude, longitude). Finally, each datetime is
represented as a 203-D vector (𝑇 ), where the first four coordinates
of the temporal feature belongs to the 4 digits of the year, the next
12 digits to the one-hot-encoding for month, the next 31 digits to
the one-hot encoding for day, the next 24 to the one-hot-encoding
for hours, the next 60 to the one-hot encoding for minutes, the next
60 to the one-hot-encoding for seconds. while the final 12 digits
contain a binary encoding of microseconds. In the ablation study,
we consider alternative feature vectors for the visual and textual
modalities.

4.2 Experimental Setup
In our experiments, we use cosine similarity between semantic
labels calculation of the affinity matrix 𝐴. We compute hash codes
of bit length 𝑑𝑐 = 16, 32, 64, 128. We assign 𝑎 from Eq. 3 to 0.01.

For each dataset, we evaluated the impact of training set size
on the performance of our proposed framework. We performed
experiments for training set sizes ranging from 1,000 to 7,000 and
calculated the mean average precision (mAP, defined below) for
each modality. Our results showed that the mAP increased until a
certain value and then it decreased. Based on these observations,
we selected the optimal training set size which corresponded to the
highest mAP.

We use mean Average Retrieval (mAP) to measure the retrieval
performance of methods:

𝑚𝐴𝑃 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅 𝑗,𝑖 ) (6)

where 𝑄 is the query set and𝑚𝑖 is the number of its ground-truth
relevant instances [8, 38] in the retrieval set. Furthermore, the term
𝑅𝑖, 𝑗 corresponds to the subset of its ranked retrieval result from the
top one to the 𝑗-th ground-truth relevant one, and precision(𝑅 𝑗,𝑖 )
measures the precision value in 𝑅 𝑗,𝑖 .

We compare our approach with two state-of-the-art multimodal
hashing methods SSAH2, FCMH3, and two multimodal deep hash-
ing methods, LAH4 and DCH5. In addition, we compare results on
the visual modality with two further unimodal approaches, SePH
and BiasHash.
1https://github.com/hanxiao/bert-as-service
2https://github.com/lelan-li/SSAH
3https://github.com/yxinwang/FCMH-TCyb2021?fbclid=IwAR1ZxxoUvI3ny9
Y1fjFVPSTSBBWhJmqeWsz3S4sFMdLjuUvFfBEo1J2f2dU

4https://github.com/IDSM-AI/LAH
5https://github.com/thulab/DeepHash
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Table 2: Multimodal scenario results for AU-AIR with differ-
ent code lengths and query modalities.

Query Method 16bit 32bit 64bit 128bit

V
→

M

SSAH [15] 0.8180 0.8195* 0.8179* 0.8102*
FCMH [35] 0.8343 0.8533* 0.9030 0.8930
SePH [20] 0.6901* 0.6923* 0.6921* 0.7011*
LAH [36] 0.8423* 0.8501* 0.8661 0.8698
MuseHash 0.8242 0.8956 0.8839 0.8932

T
→

M

SSAH [15] 0.8330 0.8390 0.8201* 0.8294*
FCMH [35] 0.8035* 0.8013* 0.8003* 0.8000*
SePH [20] 0.7001* 0.7111* 0.7132* 0.7201*
LAH [36] 0.8200* 0.8231* 0.8245* 0.8311*
MuseHash 0.8412 0.8681 0.8951 0.8896

S
→

M

SSAH [15] 0.8350* 0.7740* 0.7883* 0.8511*
FCMH [35] 0.9012* 0.8800* 0.8453* 0.8200*
SePH [20] 0.7901* 0.8002* 0.8214* 0.8276*
LAH [36] 0.8410* 0.8496* 0.8545 0.8591
MuseHash 0.9626 0.8901 0.8680 0.8609

We measured runtime of the experiments, which showed that
all python implementations performed similarly, while the matlab
implementation was slightly slower but would likely perform the
same if implemented in python. Additionally, all implementations
used similar (and small) amounts of memory. As the running time
and memory usage were similar, we focus on evaluating the quality
of the results in the remainder of this section.

4.3 Experimental Results
The following experiments were conducted in this study: 1) Multi-
modal Scenario, where the dataset is described using all available
modalities, but queries are made using one modality, such as vi-
sual or text (Section 4.3.1); 2) Unimodal Scenario, where both the
collection and the queries are made use only the visual features
(Section 4.3.2); and 3) Ablation Study, where the effect of different
features on retrieval performance is analyzed (Section 4.3.3).

4.3.1 Multimodal Scenario Q → M. As we mentioned in Section 1,
we focus on the case where different modalities may be applicable
for different collections, while the queries have a single modality.
Tables 2 through 6 show the mAP for the proposed MuseHash ap-
proach, compared to the four state-of-the-art multimodal methods
in AU-AIR, MarDCT, SeaDronesSee, MIRFlickr25K, and NUS-WIDE
dataset, respectively. The symbol ∗ indicates that the mAP value
the MuseHash method is statistically significant compared to the
corresponding method, using a t-test [7] to measure the significance
between the results from relatively large sample of queries (Test
Set Size in Table 1).

Overall, the tables show that MuseHash outperforms all the
baselines in most cases for different hash code lengths (length = 16,
32, 64, 128 bit) in all five benchmark datasets. We observe that as
the hash code length increases, the performance of the MuseHash
mainly improves, reflecting its capability of enhance more semantic
information into longer hash codes. In addition, MuseHash gives

Table 3: Multimodal scenario results for MarDCT with dif-
ferent code lengths and query modalities.

Query Method 16bit 32bit 64bit 128bit

V
→

M

SSAH [15] 0.6578* 0.6045* 0.6046* 0.6043*
FCMH [35] 0.7170* 0.7023* 0.6812* 0.6701*
SePH [20] 0.6441* 0.6452* 0.6500* 0.6523*
LAH [36] 0.7011* 0.7056* 0.7200* 0.7146
MuseHash 0.7729 0.7624 0.7404 0.7148

T
→

M

SSAH [15] 0.6278 0.6299 0.6079 0.6041
FCMH [35] 0.6018* 0.6073* 0.6134* 0.6101*
SePH [20] 0.6001* 0.6014* 0.6075* 0.6198*
LAH [36] 0.6211* 0.6291* 0.6301* 0.6354*
MuseHash 0.6500 0.6523 0.6555 0.6589

Table 4: Multimodal scenario results for SeaDronesSee with
different code lengths and query modalities.

Query Method 16bit 32bit 64bit 128bit

V
→

M

SSAH [15] 0.8221* 0.8211* 0.8256* 0.8300*
FCMH [35] 0.8300* 0.8323* 0.8389* 0.8401
SePH [20] 0.8201* 0.8258* 0.8265* 0.8279*
LAH [36] 0.8231* 0.8299* 0.8345* 0.8401*
MuseHash 0.8311 0.8346 0.8401 0.8521

T
→

M

SSAH [15] 0.7901* 0.7989* 0.8011* 0.8031*
FCMH [35] 0.7801* 0.7889* 0.8023* 0.8067*
SePH [20] 0.7721* 0.7733* 0.7801* 0.7856*
LAH [36] 0.7801* 0.7811* 0.7830* 0.7840*
MuseHash 0.8361 0.8385 0.8468 0.8475

S
→

M

SSAH [15] 0.8430* 0.8445* 0.8489* 0.8493*
FCMH [35] 0.8312* 0.8323* 0.8441* 0.8450*
SePH [20] 0.8301* 0.8338* 0.8359* 0.8401*
LAH [36] 0.8269* 0.8271* 0.8291* 0.8330*
MuseHash 0.8584 0.8601 0.8634 0.8690

Table 5: Multimodal scenario results for MIRFlickr25K with
different code lengths and query modalities.

Query Method 16bit 32bit 64bit 128bit

V
→

M

SSAH [15] 0.8464 0.8426 0.8432 0.8429*
FCMH [35] 0.7024* 0.7035* 0.7010* 0.7013*
SePH [20] 0.6612* 0.6643* 0.6701* 0.6711*
LAH [36] 0.7001 0.7023 0.7001 0.6931
MuseHash 0.8201 0.8225 0.8228 0.8457

A
→

M

SSAH [15] 0.5526* 0.5913* 0.5253* 0.5178*
FCMH [35] 0.7012* 0.7023* 0.7018* 0.6953*
SePH [20] 0.6801* 0.6899* 0.6932* 0.6989*
LAH [36] 0.5012* 0.5001* 0.5021* 0.5120*
MuseHash 0.7071 0.7121 0.7128 0.7177
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Table 6: Multimodal scenario results for NUS-WIDE with
different code lengths and query modalities.

Query Method 16bit 32bit 64bit 128bit

V
→

M

SSAH [15] 0.8091* 0.8101* 0.8156* 0.8200*
FCMH [35] 0.9110* 0.9233* 0.9340* 0.9401
SePH [20] 0.8030* 0.8058* 0.8101* 0.8189*
LAH [36] 0.8001* 0.8099* 0.8145* 0.8201*
MuseHash 0.9255 0.9278 0.9300 0.9345

A
→

M

SSAH [15] 0.6630* 0.6645* 0.6689* 0.7023*
FCMH [35] 0.7112* 0.7143* 0.7189* 0.7201*
SePH [20] 0.6811* 0.6878* 0.6901* 0.6944*
LAH [36] 0.7260* 0.7301* 0.7340* 0.7401*
MuseHash 0.7471 0.7511 0.7549 0.76001

better results for visual and spatial queries in comparison to other
types. This happens due to better quality information of those
modalities. The time and text information of the used datasets
contain huge time intervals or sentences with noise.

However, SSAH gives the best results on MIRFlickr25K dataset
for visual queries, while FCMH surpasses the compared methods in
AU-AIR dataset. Note, however, that MuseHash can handle more
than two modalities in contrast to these other state-of-the-art meth-
ods. To further explore the performance for the MIRFlickr25K
dataset, we employed a 5-fold cross-validation methodology to
evaluate the performance of our proposed method. In this case, the
results obtained from the two best methods (SSAH and MuseHash)
were found to be indistinguishable, indicating that both methods
performed similarly.

All methods performwell on AU-AIR and SeaDronesSee datasets,
particularly for visual and spatial modalities. MarDCT results are
lower and may be due to the quality of visual and temporal modal-
ities captured over long periods. MIRFlickr25K and NUS-WIDE
show intermediate results with lower values for textual queries due
to noisy sentences. Overall, MuseHash performs consistently well
across all datasets.

4.3.2 Unimodal Visual Scenario V → V. To study the performance
of the multimodal approaches in unimodal situations, we compare
all the aforementioned methods with BiasHash and DCH using
visual queries over the visual modality, as both methods perform
unimodal queries and are designed for image retrieval. The results
of those methods over the five datasets are given in Table 7. In this
scenario, MuseHash outperforms all six state-of-the-art methods
for all datasets.

It is interesting to compare the performance of MuseHash in this
unimodal scenario to its performance in the multimodal scenario
above, with a visual query modality. MuseHash performs better
when using all modalities on the MarDCT, MIRFlickr25K and NUS-
WIDE datasets, because the other modalities contain information
of high quality in these collections. For the remaining datasets,
AU-AIR and SeaDronesSee, the performance is better using only
the visual modality to respresent the images, since the temporal
modality is weaker as each image represents long time intervals.

Table 7: Unimodal scenario of visual modality with different
code lengths.

Dataset Method 16bit 32bit 64bit 128bit

A
U
-A

IR

SSAH [15] 0.7980* 0.8090* 0.8101* 0.8122*
FCMH [35] 0.8800* 0.8812* 0.8901* 0.8966*
SePH [20] 0.7901* 0.7933* 0.7900* 0.8020*
LAH [36] 0.8001* 0.8123* 0.8130* 0.8223*
DCH [4] 0.8511* 0.8423* 0.8399* 0.8390*
BiasHash [27] 0.8142* 0.8256* 0.8139* 0.8230*
MuseHash 0.9255 0.9300 0.9378 0.9401

M
ar
D
C
T

SSAH [15] 0.6312* 0.6365* 0.6367* 0.6370*
FCMH [35] 0.6901* 0.6976* 0.6500* 0.6412*
SePH [20] 0.6411* 0.6401* 0.6510* 0.6553*
LAH [36] 0.7231* 0.7301* 0.7369* 0.7388*
DCH [4] 0.7081* 0.7080* 0.7034* 0.7011*
BiasHash [27] 0.7201* 0.7281* 0.7301* 0.7349*
MuseHash 0.7401 0.7451 0.7461 0.7488

Se
aD

ro
ne

sS
ee

SSAH [15] 0.8201* 0.8293* 0.8301* 0.8322*
FCMH [35] 0.8201* 0.8234* 0.8254* 0.8366*
SePH [20] 0.8003* 0.8090* 0.8100* 0.8120*
LAH [36] 0.8230* 0.8232* 0.8251* 0.8303*
DCH [4] 0.8399* 0.8411* 0.8456* 0.8490*
BiasHash [27] 0.8239* 0.8389* 0.8443* 0.8501*
MuseHash 0.9388 0.9390 0.9400 0.9411

M
IR

Fl
ic
kr

25
K

SSAH [15] 0.8001* 0.8101* 0.8112* 0.8211*
FCMH [35] 0.6882* 0.6800* 0.6771* 0.6770*
SePH [20] 0.6601* 0.6639* 0.6670* 0.6690*
LAH [36] 0.6811* 0.6849* 0.6881* 0.6888*
DCH [4] 0.6831* 0.6852* 0.6833* 0.6859*
BiasHash [27] 0.6820* 0.6820* 0.6844* 0.6871*
MuseHash 0.8089 0.8191 0.8210 0.8223

N
U
S-
W

ID
E

SSAH [15] 0.8080* 0.8093* 0.8101* 0.8120*
FCMH [35] 0.9000* 0.9012* 0.9104* 0.9066*
SePH [20] 0.8021* 0.8078* 0.8101* 0.8120*
LAH [36] 0.8001* 0.8032* 0.8090* 0.8123*
DCH [4] 0.8399* 0.8401* 0.8414* 0.8390*
BiasHash [27] 0.8042* 0.8056* 0.8150* 0.8186*
MuseHash 0.9255 0.9261 0.9290 0.9300

Figure 3 shows the qualitative results of image retrieval given
an image query on AU-AIR. The queries were selected as the most
representative from each class. Each row corresponds to a retrieval
method. The first column contains the image query, while the fol-
lowing 10 images belong to the top-10 retrieved results of each
method, ranking from left (most relevant, red color) to right (less
relevant, blue color). The symbols of a green corner, with a check
mark and a red corner, with an X indicate that the retrieved image
is relevant to the query or not, respectively. MuseHash returns
more relevant results to the given query in comparison with the
state-of-the art methods.

4.3.3 Ablation Study. In addition, we perform experiments based
on different descriptors for visual and textual modality and compare

2023-04-03 12:52. Page 7 of 1–9.
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Figure 3: Retrieval performance of the proposed MuseHash and compared methods on the AU-AIR benchmark dataset.

Table 8: Comparison of visual descriptors in the unimodal
scenario 𝑉 → 𝑉 .

ResNet50 VGG16

Dataset Method 16bit 128bit 16bit 128bit

N
U
S-
W

ID
E

SSAH [15] 0.8080 0.8222 0.7901 0.8101
FCMH [35] 0.9000 0.9066 0.8901 0.9001
SePH [20] 0.8021 0.8120 0.7810 0.7911
LAH [36] 0.8001 0.8123 0.7882 0.8021*
DCH [4] 0.8399 0.8390 0.8511 0.8423
BiasHash [27] 0.8042 0.8186 0.8000 0.8171
MuseHash 0.9255 0.9300 0.9211 0.9298

Se
aD

ro
ne

sS
ee

SSAH [15] 0.8201 0.8322 0.8000 0.8200
FCMH [35] 0.8201 0.8366 0.8100 0.8212
SePH [20] 0.8003 0.8120 0.7921 0.8033
LAH [36] 0.8230 0.8303 0.8011 0.8223
DCH [4] 0.8399 0.8490 0.8211 0.8223
BiasHash [27] 0.8239 0.8501 0.8252 0.8306
MuseHash 0.9388 0.9411 0.9277 0.9301

our method with the state-of-the-art methods to check how much
influence the feature descriptor has to the performance of methods.

Table 8 shows the results for two different visual feature vec-
tors, ResNet50 which was used in the previous experiments and
VGG16, a competing state-of-the-art method. For space reasons, we
focus on two collections; the same pattern holds for the remaining
collections. As the table shows, the performance of the different
methods is largely unaffected by the visual feature vector, although
VGG16 performs slightly worse. As before, however, MuseHash
outperforms all other methods.

Table 9: Comparison of textual descriptors in the unimodal
scenario 𝑇 → 𝑇 .

BERT BoW

Dataset Method 16bit 128bit 16bit 128bit

N
U
S-
W

ID
E SSAH [15] 0.6626 0.6278 0.5626 0.5278
FCMH [35] 0.7112 0.7253 0.6954 0.7011
SePH [20] 0.6801 0.6680 0.6620 0.6660
LAH [36] 0.7231 0.7301 0.7001 0.7121
MuseHash 0.7471 0.7477 0.7491 0.7492

Turning to the textual modality, Table 9 shows the results for
two different textual feature vectors, BERT which was used in the
previous experiments and BoW, and earlier state-of-the-art method.
In contrast to the visual features, some methods are affected by
the textual descriptor, in particular SSAH which performs much
worse using BoW. On the other hand, both SePH and MuseHash
perform equally well with both feature vectors, and MuseHash
retains the best performance of all methods. Overall, the results in
this section demonstrate the effectiveness of MuseHash across a
variety of feature vectors.

5 CONCLUSIONS
In this paper, we have transformed the Bayesian Ridge-based Se-
mantic Preserving Hashing to support multimodal queries. This
change exploits the inner relations between different modalities.
Our experiments show that MuseHash consistently outperforms
six state-of-the-art methods in both multimodal and unimodal sce-
narios across a variety of different domain-specific and benchmark
image collections. The high performance is achieved with different
visual (VGG16, ResNet50) and textual (BoW or BERT) descriptors
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and across a range of code lengths (16bit to 128bit), regardless of
feature extractor type. MuseHash is therefore robust and adaptable
to multiple modalities and scenarios, surpassing the state-of-the-art
methods.
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