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Abstract. Parkinson’s disease (PD) is one of the most prevalent and complex
neurodegenerative disorders. Timely and accurate diagnosis is essential for the
effectiveness of the initial treatment and improvement of the patients’ quality
of life. Since PD is an incurable disease, the early intervention is important to
delay the progression of symptoms and severity of the disease. This paper aims
to present Ince-PD, a new, highly accurate model for PD prediction based on
Inception architectures for time-series classification, using wearable data derived
from IoT sensor-based recordings and surveys from the mPower dataset. The fea-
ture selection process was based on the clinical knowledge shared by the medical
experts through the course of the EU funded project ALAMEDA. The algorithm
predicted total MDS-UPDRS I & II scores with a mean absolute error of 1.97 for
time window and 2.27 for patient, as well as PDQ-8 scores with a mean absolute
error of 2.17 for time window and 2.96 for patient. Our model demonstrates a
more effective and accurate method to predict Parkinson Disease, when compared
to some of the most significant deep learning algorithms in the literature.

Keywords: Deep Learning models · Parkinson’s Disease ·MDS-UPDRS ·
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1 Introduction

Parkinson’s disease (PD) is a progressive, chronic and common neurodegenerative dis-
ease that affects more than 10 million people worldwide [1]. The prevalence of PD
has been increased in recent decades, and it’s estimated that almost 1% of people above
60 years old in industrialized societies are affected by the condition. However, the symp-
toms of PD can often go unnoticed in the early stages, which might delay early diagnosis
and accurate treatment [2, 3]. Usually, the symptoms are both motor and non-motor, but
in the early stages, they are mostly linked with dyskinesia, tremor and muscle stiffness.
Severity of PD is commonly assessed using the Movement Disorder Society-Unified
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Parkinson’s Disease Rating Scale (MDS-UPDRS) and Parkinson’s disease Question-
naire (PDQ-8). The MDS-UPDRS is a revision of Unified Parkinson’s Disease Rating
Scale (UPDRS) and developed to resolve some flaws of the original scale [4]. TheMDS-
UPDRS consists of 4 different parts, MDS-UPDRS I, II, III and IV, which are used to
monitor and evaluate motor and non-motor aspects of experiences and activities of daily
living (ADL), mood and mental state, complication in treatment and more. Moreover,
PDQ-8 is an 8-item questionnaire and a shortened version of PDQ-39. It requires the
patient to answer eight questions relevant to their mood, physical condition, Activities
of Daily Living (ADL) and mental state where a high accumulated score signifies poor
quality of life. Overall, both of these assessment tools are considered as reliable and
valid measures and are widely used in clinical practice and research settings [5, 6].

In recent years, the extensive use of Artificial Intelligence (AI) and Internet of Things
(IoT) technologies to monitor patients with Parkinson’s disease has been gaining trac-
tion in the healthcare industry [7]. Especially during the COVID-19 pandemic era, the
advanced need for PD patients to continue their treatment in a riskless way highlighted
the necessity for personalized and remotemonitoring [8, 9]. To achieve that, sensors such
as magnetometers, accelerometers, gyroscopes, are increasingly being used in wearable
devices like smartwatches and smart insoles to collect real-time data on patients with the
aim of providing better health services and improving their living conditions [10–12].
This data can be used in combination with Machine Learning (ML) and Deep Learn-
ing (DL) techniques to predict disease stage, severity, symptoms or medical test scores,
providing more flexible ways of handling large medical datasets, minimizing the costs
of medical care and assisting healthcare professionals to make timely decisions [13].

TheALAMEDAproject1, funded by the EU, aims to provide personalized rehabilita-
tion treatment assessments for patients with neurological disorders such as Parkinson’s,
Multiple Sclerosis and Stroke, using AI. One of the key goals of the project is to assist
healthcare professionals in making timely and accurate decisions (e.g. diagnosis) with-
out requiring patients to make physical visits to a clinic or hospital. To achieve this goal,
the project is using various wearable sensors, such as accelerometers, to collect real-time
data on patients’ movements and other physical indicators. This paper presents a deep
learning-based algorithm for estimating total MDS-UPDRS (parts I and II) and PDQ-8
score from data collected fromwearable sensors. More specifically, we present Ince-PD,
a highly accurate model for PD prediction based on the InceptionTime architecture for
time-series classification [14]. For comparison purposes, we implemented a number of
deep learning models based on LSTM and CNN architectures.

The rest of this paper is organized as follows. In Sect. 2, a literature reviewonprevious
relatedworks onParkinson’s disease prediction usingwearable sensors and deep learning
techniques is presented. InSect. 3, the Ince-PDarchitecture and the implementationof the
model for PDprediction is introduced. In Sect. 4, the experimental setup, the comparative
and evaluation methods are described. Finally, in Sect. 5 the results obtained of the
proposed framework are discussed and in Sect. 6, the conclusions and future research
directions are presented.

1 https://alamedaproject.eu/.

https://www.alamedaproject.eu/
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2 Related Work

In the existing literature, there are numerous studies on the PD detection, the stage and
severity of the disease and the prediction of variables pertinent to the use case. Some
of the most common machine learning and deep learning models for Parkinson’s dis-
ease are logistic regression, k-nearest neighbors, Support Vector Machine, classification
trees and neural networks [15–19]. Nilashi et al. [20] used supervised and unsupervised
learning methods to perform PD diagnosis through UPDRS prediction. Their study’s
results demonstrated that Expectation-Maximization (EM) with Support Vector Regres-
sion (SVR) ensembles provide better performance than decision trees andSVRcombined
with other clustering approaches. An ensemble deep model for continuously estimating
UPDRS III based on free-body motion data was presented by Hssayeni et al. [21]. The
evaluation with Leave-One-Out Cross-Validation (LOOCV) indicated high correlation
and a lowMean Absolute Error (MAE) of 5.95. Rehman et al. [22] applied Deep Learn-
ing techniques to wearable-based gait data to predict MDS-UPDRS III scores. Their
proposed DL Convolutional Neural Network (CNN) achieved a MAE of 6.29. A gait
analysis-based PD auxiliary diagnosis system proposed by Chen et al. [23]. The system
collected data from embedded devices, which was then analyzed by a 1D CNN model.
The system achieved a high recognition accuracy of 91.4% for abnormal gait. Setiawan
et al. [24] also implemented a DL algorithm based on Vertical Ground Reaction Force
(VGRF) time frequency features for PD detection and severity classification. The best
average accuracy of this algorithm was 96.52% using ResNet-50. Papadopoulos et al.
[25] focused on the unobtrusive detection of PD from multi-modal and in-the-wild sen-
sor data using a deep learning model that consists of three parts: the feature extraction
module, the attention module and the final classifier module. Asuroglu et al. [26] pre-
sented a deep learning model, which combines CNNs and Locally Weighted Random
Forest (LWRF) for PD severity assessment using wearable sensor data and achieved
3.009 MAE. Zhao et al. [27] presented a deep learning architecture that combines CNN
and Long shot-termmemory (LSTM) that outperforms other previous studies in terms of
accuracy in Parkinson’s Disease prediction. In a recent study, Yang et al. [28] developed
an objective method to automatically classify patients with Parkinson’s Disease and
Health Controls (HC) using PD-ResNet from gait data. Interestingly, they achieved bet-
ter results than previous methods in terms of accuracy, precision, F1-Score and recall.
Balaji et al. [29] presented an automatic and non-invasive method for PD diagnosis,
using LSTM network for severity rating of PD. Finally, Bobic et al. [30] introduced a
predictive model for bradykinesia in PD, using CNN architectures.

Even though Time Series Classification (TSC) is considered as a complex problem,
the arise of deep learning showed promising results for its solution. The InceptionTime,
as presented by [14], is an ensemble of deep CNN models, which provide great results
for TSC. The core parts of an inception network are the two residual blocks, each of one
consists of three Inception modules, which replace the traditional fully convolutional
layers. Each inception module is composed of multiple layers like the Bottleneck layer,
the convolution layer, the max pooling layer and the depth concatenation layer. A linear
shortcut connection is used to transfer the input of every residual block to the next
block’s input. After deploying the residual blocks, a Global Average Pooling (GAP) is
utilized which computes the average of the output multivariate time series of the whole
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dimension. Lastly, a traditional fully connected Softmax layer is used. Figure 1 presents
the basic structure of the InceptionTime network.

Fig. 1. The Inception network of InceptionTime model.

The present study uses several residual connections and modified inception modules
as key components of its architecture to predict PD stage using total MDS-UPDRS I &
II and PDQ-8 scores. To the best of our knowledge, this is the first regression model
for PD prediction that is based on the InceptionTime network and the efficiency of the
model provides great potential for future work. As in most cases the DL algorithms
perform better in PD prediction, we utilized some of the most efficient architectures as
the comparison base for our approach.

3 Methodology

Machine Learning and Deep Learning techniques have shown great potential in pre-
dicting and diagnosing diseases, including Parkinson’s disease. This study utilizes the
InceptionTime architecture, a novel architecture for Time Series Classification (TSC),
to build Deep Learning models able to diagnose Parkinson’s Disease through predict-
ing total MDS-UPDRS I & II and total PDQ-8 scores. InceptionTime architecture is
presented in Sect. 2 and our proposed Ince-PD is presented in detail in Sect. 3.3. The
proposed framework for deep learning modeling for Parkinson’s disease diagnosis, as
shown in Fig. 2 can be highlighted in 3 specific stages:

Fig. 2. Flow of the proposed Ince-PD framework for PD prediction.

• Data acquisition, where the data is acquired and evaluated based on the clinical
requirements and the needs of the project.

• Data preprocessing, where the data is converted into defined sets.
• Model implementation and total MDS-UPDRS I & II and total PDQ-8 prediction,

where the model architecture is built and the target labels are predicted.
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3.1 Data Acquisition

This study used data acquired from themPower PublicResearchPortal [31]. ThemPower
is a clinical observation study onPD that collected data from sensor-based recordings and
surveys over a large number of participants. Thewhole study carried out through amobile
application interface and its 7 tasks are divided in activities (walking, memory, tapping
and voice) and survey questionnaires (demographic survey, MDS-UPDRS survey and
PDQ-8 survey).

Based on the suggestions from the medical experts, we utilized four out of seven
tasks (the walking task, the demographics survey, the PDQ-8 andMDS-UPDRS survey).
The walking test consists of three different segments: outbound, rest and return. The
accelerometer and gyroscope of the smartphone capture the three-dimensional linear and
angular acceleration of each participant during this test. The purpose of utilizing these
data is the evaluation of anymovement limitation that is relevant to PDanddiscriminating
PD patients from healthy control subjects, while predicting disease stage using the scores
of the questionnaires. Table 1 summarizes the number of participants and the unique tasks
per activity in the mPower dataset.

Table 1. Data availability in mPower dataset.

Activity Number of Unique Participants Unique Tasks

Demographics 6805 6805

PDQ-8 1334 1641

MDS-UPDRS 2024 2305

Walking total 3101 35410

Walking outbound acc 3101 35407

Walking return acc 2807 23883

Walking rest acc 3101 35407

3.2 Data Preprocessing

Numerous studies have shown that pre-processing the data is necessary forMDS-UPDRS
and PDQ-8 prediction to be more accurate [32, 33]. In the preprocessing stage, missing
values, noise and inconsistencies in the dataset are addressed. The first step was to
determine which of the available data is useful for the requirements of the project and
the management of the missing values, as they can be an essential obstacle for Deep
Learning Algorithms. Feature selection aims to reduce model’s complexity and provides
faster and easier training and interpretation. In this work, participants who performed
both surveys and specific walking tasks were selected by utilizing information derived
from the clinicians of the project. Converting the raw data to appropriate input format
for training models was important part of the preprocessing, while the definition of the
common keys addressed the overlapping values of the dataset. The following step was
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the segmentation of the time sequences into smaller fragments by using sliding windows
of 5 s (500 rows given a sampling rate of 100 Hz), corresponding to 50% overlap. For
the dataset partitioning, the 80% of the data was the training sample, while the 20% was
utilized for testing purposes.

3.3 Proposed Model Architecture and Implementation

In this study, the InceptionTime, a novel architecture for TSC, is utilized for total MDS-
UPDRS I & II and PDQ-8 prediction. The main parts of the Inception network architec-
ture are described in Sect. 2. Several significant modifications have been implemented
in the architecture, which are classified into two distinct categories: Firstly, alterations
pertaining to the Bottleneck layer inside the inception modules. Secondly, changes have
been made to the overall framework, including the addition of dropout and batch nor-
malization layers, as well as the utilization of different activation functions. The residual
blocks are essential parts as the connection at every third inception module provides
better optimization capabilities and overall performance. Thus, they remained as pro-
posed in the original work. The Bottleneck layer inside the inceptionmodule is removed,
as experiment results suggested that without it, better efficiency is achieved. After the
modified inceptionmodules, a batch normalization layer is deployed, followed by a Rec-
tified Linear activation function (ReLU). The output from the ReLU activation function
is passed on to an one-dimensional Global Average Pooling before passing to the output
layer where instead of the Softmax layer, a Rectified Linear activation function (ReLU)
is deployed to achieve faster learning and better performance. To overcome overfitting
problems, tuning of the kernel size of the convolution has been implemented, while
adding a Dropout layer with 0.5 rate after Inception modules improve the generaliza-
tion of the model and prevent it from relying too heavily on any set of features. Other
parameters that needed to be modified were the depth and the number of filters. The final
stage of the implementation process was the prediction stage. At this point, the models
predicted the total MDS-UPDRS I & II and PDQ-8 according to the input data. The
proposed Ince-PDmodel is built by utilizing InceptionTime and differentiating essential
components, as detailed above. In Fig. 3, a schematic diagram of the proposed Inception
model for PD prediction is depicted.

Fig. 3. The architecture of the proposed Ince-PDmodel for total-MDS-UPDRS I & II and PDQ-8
prediction.

After implementing several experiments, we concluded that the use of convolution
layers between the inception modules is a sensible decision with respect to performance
and computational complexity.
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4 Experiments

4.1 Model Performance Evaluation

The performance evaluation of the Inception model was carried-out by using the Mean
Absolute Error (MAE) andMean Square Error (MSE) per-window and per-patient basis.
The mathematical formulas of MAE and MSE are presented in Eq. 1 and Eq. 2, respec-
tively, where yi

∧

, yi are the predicted value and the actual value. The character n represents
the entire set of the samples.

MAE = 1

n

∑n

i=1
|ŷi − yi| (1)

MSE =
∑n

i=1

(ŷi − yi)2

n
(2)

To further evaluate our model, a variety of different approaches in literature for
estimating the totalMDS-UPDRS I& II and PDQ-8were used for comparison purposes.
The proposed method was compared to the same dataset for both target labels with the
architectures that will be introduced in the next sections.

4.2 Experimental Setup

The Inception model that is presented in this study was developed with “Python 3.8” and
operated on a PC with an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz processor.
The developed network was implemented in TensorFlow [34] and the models trained
on 10 epochs, allowing the model to demonstrate better performance by learning from
the training data. During the training process, the fit method was applied to the training
data and target labels, and the Adam optimizer, an adaptive learning rate optimizer, was
used for efficiency and speed purposes [35]. The model’s hyperparameters tuning was
implemented heuristically, using TensorFlow’s HParams library. The optimization and
tuning processes utilized MAE and MSE to define the effectiveness of the model and
were important for the optimal configuration of the model. The aim was to minimize
the MAE and MSE without sacrificing the speed and complexity of the model, while
comparing our results with optimized models that achieved efficient results on the same
dataset. In the following Table 2, some essential parameters of our model are presented.

4.3 Comparative Methods

In order to facilitate comparisons, we trained some models based on CNN and LSTM
architectures described in the literature. All the models were trained and evaluated on
the same train and test set to achieve meaningful comparison. The first model is an 1D
Convolutional Neural Network (1D-CNN) that consists of four convolutional layers, two
pooling layers and two fully connected layers proposed in [23]. The second model is
introduced in [21] and describes a 1-D CNN-LSTM (1D-CNN-LSTM) network, con-
sisted of three convolutional blocks with a max pooling layer deployed between each
block. The third model, which is presented in [22], is based on CNN architecture (CNN),
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Table 2. Specification of parameters of the model.

Parameters Specification

Activation function ReLu

Batch size 256

Epochs 10

Optimizer Adam

Metric Mean Absolute Error (MAE)

Loss function Mean Squared Error (MSE)

where the first block of the convolutional layers (each one consists of four 1-D Con-
volutional layers) is followed by a fully connected layers block. Between each 1-D
convolutional layer a Rectified Linear Activation Function (ReLU) is deployed. The
fourth model that was implemented is based on [29] and was a class of recurrent neural
network, a Long Short-TermMemory (LSTM), which is followed by a Fully Connected
Layer and a Softmax layer. The last model that designed was a Convolutional Neural
Network (CONV-1-CONV-2) proposed by [30] which comprised of a convolutional
layer (CONV-1) with 16 filters followed by a batch normalization layer, a ReLU activa-
tion function layer, and a max-pooling layer and convolutional layer (CONV-2) with 32
filters size, followed by the same architecture.

5 Results

5.1 Total MDS-UPDRS I & II and PDQ-8 Results

The first step of evaluating our model was the verification of its superiority against the
previously described models. Due to the combination of inception modules with ReLU
function, residual connections and dropout layer the Ince-PD provide better learning
capabilities, while being computationally efficient and speeding up the training process.
Despite optimizing the parameters of the comparative methods, our proposed model
demonstrates the best performance compared to them, achieving a MAE of 1.97 on per-
window and 2.27 on per-patient basis for total MDS-UPDRS I & II and a MAE of 2.17
on per-window and 2.96 on per-patient basis for total PDQ-8. Table 3 lists the results
for MDS-UPDRS I & II and PDQ-8.

After implementing multiple experiments, it was concluded that the appropriate
number of epochs is 10, as the model reached saturation. To verify this, we run our
experiments for 13 epochs, but the performance of the models did not show significant
improvement, comparing to 10. Figure 4 depicts the comparative results in MAE for the
different models for PDQ-8 after running experiments for 10 and 13 epochs.
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Table 3. MAE for Total MDS-UPDRS I & II and PDQ-8 on per-window and per-patient basis.

Model Total MDS-UPDRS I & II Total PDQ8

MAE (window) MAE (patient) MAE (window) MAE (patient)

1-D CNN 5.02 6.19 3.11 3.6

1-D CNN-LSTM 5.73 6.93 2.94 3.29

CNN 5.22 6.38 3.04 3.44

LSTM 5.08 5.80 3.62 3.57

CONV-1-CONV-2 5.46 5.12 3.21 3.36

Ince-PD 1.97 2.27 2.17 2.96

Fig. 4. MAE for PDQ-8 for 10 and 13 epochs.

To observe the model’s loss during the training process, we examine the value of the
Mean Squared Error during 10 epochs. As seen in Table 4, Ince-PD achieves significant
improvement in its performance for both target labels. The MSE of the model steadily
decreases from 9.32 to 6.91 for total MDS-UPDRS I & II and from 9.49 to 8.23 for
total PDQ-8. This reduction indicates the ability of the proposed method to effectively
predict the score of the surveys.
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Table 4. The MSE of Ince-PD for total MDS-UPDRS I & II and PDQ-8 for 10 epochs.

Epochs MDS – UPDRS I & II PDQ-8

MSE MSE

2 9,3224 9,4992

4 9,1288 9,0174

6 8,6521 8,7637

8 7,874 8.4439

10 6,9102 8,2354

6 Conclusion

Nowadays, the use of AI is an important part of the healthcare domain. ML and DL
methods are increasingly used to predict Parkinson’s disease. In this paper, tri-axial
accelerometer data from wearable sensors are given to an Inception based model that
estimates the mean absolute error for total MDS-UPDRS I & II and PDQ-8 scores.
The combination of the different units of our model provides better learning abilities
and generalization. The results obtained far exceed some basic architectures used in the
field of neurodegenerative disease prediction. After optimization, the MAE was 1.97
and 2.27 for window and for patient basis for total MDS-UPDRS I & II, while the MAE
for PDQ-8 was 2.17 for window and 2.96 for patient. Despite its great performance
though, there are limitations that should be addressed in the future. The adaptability
of the model to different datasets is a concern, as a small amount of data may affect
its efficiency. Furthermore, the framework approaches PD prediction through regression
and no classification experiments executed for its evaluation. Future work should expand
the model for more target labels (e.g. Hoehn & Yahr) and more neurodisorders like
Multiple Sclerosis and Stroke. With its great performance, the Ince-PD model enables
an increasingly better assessment of the stage of a patient’s Parkinson’s disease through
the prediction of the score of important questionnaires for medical experts. Experiments
show that with proper optimization the MAE is minimized and thus this work provides
great potential in the field of PD prediction, helping to minimize costs and to make
diagnosis by physicians more efficient.
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