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ABSTRACT
Object detection appears to be omnipresent nowadays with detec-
tors being available for every problem available, covering solutions
from extra-light to ultra resource demanding models. Yet, the vast
majority of these approaches are based on large datasets to provide
the required feature diversity. This work focuses on object detection
solutions which do not rely heavily on abundant training datasets
but rather on medium-sized data collections. It uses Efficientdet
object detector as base for the application of novel modifications
which achieve better performance both in efficiency as well in
effectiveness. The focus on medium-sized datasets aim at represent-
ing more commonplace datasets which can be accumulated and
compiled with relative ease.

CCS CONCEPTS
• Computer systems organization→ Object Detection; Deep
Learning; • Efficiency → Lightweight models.
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1 INTRODUCTION
Object detection is a fundamental task of computer vision which has
demonstrated impressive performances after the introduction of
deep learning techniques. The applicability of most works depends
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on the availability of relevant datasets. Contrary to this approach,
this work focuses, mainly, on solutions which rely on medium-
sized and easily compiled data collections, which are dominated by
different principles than larger datasets. Additionally, our solution
utilises modest hardware equipment to better demonstrate common
place object detection use.

In order to support our case, we utilize state-of-the-art Efficient-
det [26] model as base for our experiments. It includes a family of 7
detectors and uses as backbone the relevant models of EfficientNet
[25]. Models of EfficientDet are named D0 to D7 with D0 represent-
ing the lightest version. The reported results on Efficientdet [26]
focus solely on COCO dataset [16], a benchmark dataset nowadays,
ignoring the behavior on smaller datasets. In our case, experiments
were conducted on diverse datasets to showcase the robustness and
applicability of the proposed modifications.

The modification introduced focus on various aspects of the
detector. More specifically, they include a) a soft-anchor version
for better localization of the detected boxes, b) a lighter unit for
replacing part of the detector, and specifically, the Separable Con-
volutional Neural Unit, introduced in [8], c) a different approach
for training procedure which attempts to exploit the diverse size of
training instances and finally d) a more dynamic concatenation of
the final layer in the detector head.

The rest of the paper is organised as follows: section 2 presents
relevant previous works, the 3𝑟𝑑 section presents in more details
the proposed method and its specific adaptations, section 4 con-
tains the information regarding the datasets being used and the
experimental results, while the paper is concluded with section 5
which summarizes the presented work.

2 RELATEDWORK
Typically, object detectors are categorized by the utilization of a
Region Proposal Network (RPN) [23] or not. Models using RPN are
considered two-stage detectors like Fast RCNN [6], Faster RCNN
[23], Cascade R-CNN [4] and Mask RCNN [7] while models not
using RPN comprise one-stage detectors like Yolo [20], its succes-
sors [1, 21, 22] and SSD [17]. Research as in [9] has shown that
two-stage detectors are often more accurate yet less efficient due to
the introduction of the extra RPN submodel. One-stage detectors
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on the other hand are the most popular choice recently, due to their
higher efficiency and simplicity. The majority of those also utilize
predefined anchor boxes.

Nowadays, the community has special interest for efficient imple-
mentations, often being one-stage detectors like the aforementioned
Yolo family which include smaller efficient models, anchor-free de-
tectors as [14] and [28] or even model compression as [18] and
special models for CPU computations as [10]. Several works have
been proposed as improvements to the training procedure. One
such is Freezout [3] which attempts to speed up training time by
consecutively freezing layers or DSOD [24] uses densely connected
layers instead of transfer learning. Finally, soft-anchor approach
[29] focuses on the localization of the derived detected boxes using
a weighted version of anchors.

3 PROPOSED METHOD
The architecture of Efficientdet is shown in Figure 1 with some
of the proposed modifications also visible: Gradual training (sec-
tion 3.3) and the weighted Concatenation approach (section 3.4).
The remaining modifications are weighted Anchors method and
Shufflenet unit insertion.

3.1 Weighted anchors
EfficientDet uses focal [15] andHuber [11] loss for classification and
regression respectively. Additionally, a fundamental notion related
to the latter loss calculation is the use of predefined boxes called
anchors. Those boxes aim at providing the most representative box
molds for actual annotated ground truth boxes. During training
each ground truth box is compared against the predefined anchors
to determine if it constitutes a positive or negative sample.

Two Intersection over Union (IoU) thresholds, one negative and
one positive, are being used for this classification, with the negative
one being the threshold for background and the positive one used
for determining positive samples. Instead of the typical approach
to simply utilize every positive sample as of equal importance we
introduce aweight coefficient𝑤 to weigh each sample depending on
its overlap with the ground truth box and use this weighted version
on the loss function.We suspect that larger overlap produce samples
of better quality and should be more extensively represented in the
loss function.

3.2 Shufflenet units
Substitution of units with more efficient ones often help without
sacrificing any value on the effectiveness level. Following such
approach, we substituted Separable Convolutional Networks with
Shuffle units [27] (Figure 1a). The actual Shuffle units used were
taken from Thundernet model [19]. It should also be noted that
the unit being replaced was depthwise Separable Convolutional
Network [8] which was also introduced as an efficient alternative
to the typical Convolutional Neural Networks.

3.3 Gradual training
Adifferent approach has been adopted for the training of ourmodels
which separates training into 2 phases: training with smaller and

Table 1: Datasets statistic analysis

Pascal Voc dataset Nexet dataset
set aopi # imgs size aopi # imgs size
train 2.85 16551 19.08% 2.73 39188 2.12%

train small 4.09 9005 11.01% 2.89 35547 1.64%
train large 1.38 7546 47.64% 1.13 3641 14.13%
aopi: average object per image, imgs: images, size: object to image size

larger objects. Features learned at each phase appear to has high-
degree of independence, to activate different layers (Figure 1b) and
thus, adopting such approach improves overall performance.

3.4 Weighted Concatenation
Class and Box prediction subnets typically include a concatenation
step. We introduced a weighted version of such step (Figure 1c)
which further improves performance.

4 EXPERIMENTAL RESULTS
4.1 Datasets
Pascal VOC [5] is a standard dataset for evaluating object detection
with 20 classes of generic objects on traditional point of view. Nexet
dataset [13] is a diverse dataset for autonomous driving with 5
classes which can be used for object detection. The dataset was
randomly split into 2 sets: 80% (39188 samples) - 20% (9941 samples)
for training and evaluation, respectively.

Table 1 presents an analysis of the two dataset where it can be
seen that Nexet contains smaller objects in comparison to Pascal
Voc. Furthermore, the separation into imagesets containing large
and small objects respectively produces highly unbalanced image-
sets in Nexet case and, thus, hinders the Gradual Training approach
results.

4.2 Results
This section presents the results of the conducted experiments:
Quantitative results for Pascal Voc and Nexet in Tables 2 and some
qualitative results in Figure 2. Pascal Voc results seem to benefit for
shallower model implementations, and thus, reducing the depth of
the DBiFPN from 3 to 1 increased mAP by more than 2%. Applying
the same decrease in Nexet did not contributed much when the
smaller image size was used but on larger images the difference
was annihilated.

For the training phase we opt for Adam optimizer [12] in place
of SGD [2] in order to closely simulate the conditions this work is
expected to be used. This work experimented with utilizing a frozen
backbone (trained on ImageNet) for the initial steps of the training
which proved beneficiary for the effectiveness of the model (Table
3). The initial learning rate was set to 10−3 for the entire frozen
phase, while it was reduced by a factor of 10 at three steps during
the last phase. Batch size was set to 32 for the frozen backbone
phase(s) and 4 for the rest. Training and evaluation were performed
on a GeForce RTX 3080 graphics card.

We utilize the two lightest model of EfficientDet family, 𝜙0 and
𝜙1, as milestone comparison models. There are 4+1 models pre-
sented in this paper with each one of these 4 incorporating a new
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Figure 1: a) Shuffle unit b) Efficientdet architecture c) Weighted concatenation

Table 2: Object detection results on Pascal Voc and Nexet

Pascal Voc dataset Average precision results
model backbone 𝜙 input size 𝜙 DBiFPN GT wA SU wCon mAP Flops fps

EfficientDet 0 0 3 75.24% 2.156B 65.0
EfficientDet lite 0 0 1 77.64% 2.093B 60.8
EfficientDet lite 0 0 1 ✓ 79.30% 2.093B 60.8
wEfficientDet lite 0 0 1 ✓ ✓ 79.48% 2.093B 60.8

wShuffleEfficientDet lite 0 0 1 ✓ ✓ ✓ 79.72% 2.089B 57.0
wwShuffleEfficientDet lite 0 0 1 ✓ ✓ ✓ ✓ 80.35% 2.089B 56.0

EfficientDet lite 0 1 1 77.93% 3.269B 59.3
EfficientDet lite 0 1 1 ✓ 79.93% 3.269B 59.3
wEfficientDet lite 0 1 1 ✓ ✓ 79.95% 3.269B 59.3

wShuffleEfficientDet lite 0 1 1 ✓ ✓ ✓ 80.98% 3.262B 54.8
w2ShufflefficientDet lite 0 1 1 ✓ ✓ ✓ ✓ 81.31% 3.263B 53.3

EfficientDet 1 1 4 79.36% 5.242B 43.4
Nexet dataset Average precision results

model backbone 𝜙 input size 𝜙 DBiFPN GT wA SU wCon mAP Flops fps
EfficientDet 0 0 3 53.38% 2.114B 61.3
EfficientDet 0 0 3 53.38% 2.114B 61.3
EfficientDet 0 0 3 ✓ 53.70% 2.114B 61.3

wShufflefficientDet 0 0 3 ✓ ✓ 53.92% 2.106B 57.6
wwShuffleEfficientDet 0 0 3 ✓ ✓ ✓ 53.94% 2.106B 56.5

EfficientDet 0 1 3 60.04% 3.300B 59.7
wEfficientDet 0 1 3 ✓ 60.52% 3.300B 59.7

wShufflefficientDet 0 1 3 ✓ ✓ 60.45% 3.289B 55.3
w2ShufflefficientDet 0 1 3 ✓ ✓ ✓ 60.72% 3.289B 53.8

EfficientDet 1 1 3 61.58% 5.152B 43.8
DBiFPN: Depth Bidirectional FPN, GT: Gradual Training, wA: weighted Anchors
SU: Shuffle Unit, wCon: weighted Concatenation, mAP: mean Average Precision

improvement while the +1 model refers to a lighter version of Effi-
cientdet with less depth. More specifically, EfficientDet lite reduces
DBiFPN to 1, the next model introduces also Gradual Training
during the initial phase of training, wEfficientDet lite introduces
additionally Weighted Anchors, wShufflefficientDet replaces Sepa-
rable Convolutional layers with Shuffle Units (Figure 1), and finally,

w2ShufflefficientDet also adds weighted Concatenation prior to the
Class and Box heads. The best performance is observed when all 4
improvements are included and it achieves 80.35% mAP for Pascal
Voc with lesser Flops than the original Efficientdet 𝜙0.

For Nexet the same set of improvement is applied to the baseline
model, but, due to different dataset characteristics the inclusion



ICMR2023, June 03–05, 2018, Thessaloniki, Greece Orfanidis, et al.

Table 3: Ablation study results on Pascal Voc and Nexet

dataset model mAP model wfunction mAP dataset order mAP
Pascal Voc entire model training 75.24% EfficientDet lite IoU 79.48% small-large 79.30%
Pascal Voc training on phases model 69.74% EfficientDet lite Centerness 79.04% large-small 77.49%
dataset model GT mAP model DBiFPN input size 𝜙 mAP
Nexet EfficientDet ✓ 53.06% w2ShufflefficientDet 3 0 53.92%
Nexet EfficientDet – 53.38% w2ShufflefficientDet 1 0 53.43%
Nexet w2ShufflefficientDet ✓ 53.43% EfficientDet 3 1 60.04%
Nexet w2ShufflefficientDet – 53.92% EfficientDet 1 1 60.01%

Figure 2: Pascal Voc and Nexet qualitative results

of certain of these modifications produce varying behavior. This
was the case with the BiFPN depth reduction and the Gradual
Training paradigms. Neither inclusion of those two innovations
proved beneficiary for the model’s performance. Regarding the
impact of various improvement introduced, the two datasets exhibit
different behavior. Pascal Voc takes advantage mostly from reduced
model depth (+2.4%) as well as weighted Concatenation (+0.63%)
while nexet mostly by using a bigger input image (+6.66%), possibly
implying the initial object instances are too small (Table 1).

The inspiration for our proposed method of weighted anchors
derived from [29] but we used a different weighting function. Our
function is IoU based while the later relies on a generalized ver-
sion of centerness function. Utilizing specific order for the partial
datasets has also been investigated (Table 3). Also, for Nexet dataset
we conducted a series of experiments to check if narrower models
perform better as in Pascal Voc case. Although full model performed
slightly better the actual difference was negligible when input im-
age was larger (Table 3).

5 CONCLUSIONS
This work focuses on the special conditions training on medium-
sized datasets imposes. More specifically, we examine a series of

modifications which can be adapted in order to improve the perfor-
mance of the trained model while maintaining the efficiency. Those
improvements include a gradual training approach, an improved
weighted boxes regression loss, the inclusion of more efficient units,
like shuffle unit, and finally a dynamic concatenation approach for
the detection head. We argue that the size of the dataset not only
impacts the performance of the final model but also alters the con-
ditions for the training phase. Thus, the approach suggested in this
work focuses on exploiting those condition in our favor in order
to obtain improved model performance. The base model used was
Efficientdet while experiments were conducted on Pascal Voc and
Nexet datasets.

ACKNOWLEDGMENTS
ISOLA and NESTOR projects have received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme
under grant agreement No 883302 and 101021851, respectively. Con-
tent reflects only the authors’ view and European Commission is
not responsible for any use that may be made of the information it
contains.



Tweaking EfficientDet for frugal training ICMR2023, June 03–05, 2018, Thessaloniki, Greece

REFERENCES
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. Yolov4:

Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
(2020).

[2] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010: 19th International Conference on Computational
StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers.
Springer, 177–186.

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. Freeze-
out: Accelerate training by progressively freezing layers. arXiv preprint
arXiv:1706.04983 (2017).

[4] Zhaowei Cai and Nuno Vasconcelos. 2018. Cascade r-cnn: Delving into high
quality object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 6154–6162.

[5] Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. 2015. The pascal visual object classes challenge:
A retrospective. International journal of computer vision 111, 1 (2015), 98–136.

[6] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[9] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
2017. Speed/accuracy trade-offs for modern convolutional object detectors. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
7310–7311.

[10] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. 2018. YOLO-LITE: a real-
time object detection algorithm optimized for non-GPU computers. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2503–2510.

[11] Peter J Huber. 1992. Robust estimation of a location parameter. In Breakthroughs
in statistics. Springer, 492–518.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[13] Itay Klein. 2017. NEXET — The Largest and Most Diverse Road Dataset in the
World. Retrieved Jan, 2023 from https://www.kaggle.com/datasets/solesensei/
nexet-original

[14] Hei Law and Jia Deng. 2018. Cornernet: Detecting objects as paired keypoints.
In Proceedings of the European conference on computer vision (ECCV). 734–750.

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[18] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).

[19] Zheng Qin, Zeming Li , Zhaoning Zhang, Yiping Bao , Gang Yu, Yuxing Peng,
and Jian Sun. 2019. ThunderNet: Towards real-time generic object detection
on mobile devices. In Proceedings of the IEEE/CVF international conference on
computer vision. IEEE/CVF, 6718–6727.

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[21] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
7263–7271.

[22] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[24] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xi-
angyang Xue. 2017. Dsod: Learning deeply supervised object detectors from
scratch. In Proceedings of the IEEE international conference on computer vision.
1919–1927.

[25] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In International conference on machine learning.
PMLR, 6105–6114.

[26] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 10781–10790.

[27] Xiangyu Zhang, Xinyu Zhou, Mengxiao, Lin, and Jian Sun. 2018. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. In IEEE
conference on computer vision and pattern recognition.

[28] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. 2019. Objects as points.
arXiv preprint arXiv:1904.07850 (2019).

[29] Chenchen Zhu, Fangyi Chen, Zhiqiang Shen, and Marios Savvides. 2020. Soft
anchor-point object detection. In European conference on computer vision. Springer,
91–107.

https://www.kaggle.com/datasets/solesensei/nexet-original
https://www.kaggle.com/datasets/solesensei/nexet-original

	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Weighted anchors
	3.2 Shufflenet units
	3.3 Gradual training
	3.4 Weighted Concatenation

	4 Experimental Results
	4.1 Datasets
	4.2 Results

	5 Conclusions
	Acknowledgments
	References

