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Abstract: The integration of IoT and deep learning provides the opportunity for continuous monitor-
ing and evaluation of patients’ health status, leading to more personalized treatment and improved
quality of life. This study explores the potential of deep learning to predict episodes of freezing of gait
(FoG) in Parkinson’s disease (PD) patients. Initially, a literature review was conducted to determine
the state of the art; then, two inception-based models, namely LN-Inception and InSEption, were
introduced and tested using the Daphnet dataset and an additional novel medium-sized dataset
collected from an IMU (inertial measuring unit) sensor. The results show that both models performed
very well, outperforming or achieving performance comparable to the state-of-the-art. In particular,
the InSEption network showed exceptional performance, achieving a 6% increase in macro F1 score
compared to the inception-only-based counterpart on the Daphnet dataset. In a newly introduced
IMU dataset, InSEption scored 97.2% and 98.6% in terms of F1 and AUC, respectively. This can be
attributed to the added squeeze and excitation blocks and the domain-specific oversampling methods
used for training. The benefits of using the Inception mechanism for signal data and its potential for
integration into wearable IoT are validated.

Keywords: Parkinson’s disease; deep learning; freezing of gait; inception modules; wearable
technology; squeeze and excitation module

1. Introduction

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis are chronic and progressive disorders that are characterized by the grad-
ual and ongoing death of neurons, leading to a variety of motor and cognitive symptoms
that can significantly impact a patient’s quality of life. Parkinson’s disease, in particular,
has both motor and non-motor symptoms, with freezing of gait (FoG) being a significant
and persistent symptom that can result in decreased mobility and an increased risk of falls.

Diagnosis of Parkinson’s disease typically relies on score-based tests that evaluate the
progression of symptoms, including motor and cognitive functions. These tests can include
the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). FoG is a challenging symptom to
diagnose and monitor due to its unpredictable nature. Therefore, continuous monitoring
is necessaryto identify the optimal course of treatment that can minimize the effects of
the condition on the patient’s daily activities and overall mobility. Recent advances in
smart phones have enabled the use of sensors such as accelerometers to detect and monitor
FoG and provide real-time feedback on gait patterns. The ability to provide continuous
monitoring and collect data can assist clinicians in comprehending the frequency and
intensity of FoG episodes, thereby enabling them to effectively customize treatment plans.

Moreover, automatically identifying FoG episodes can significantly reduce the work-
load of medical personnel, who previously had to manually review video footage of each
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patient. Additionally, it can provide valuable analytics and early warning systems to alert
caregivers when an episode occurs.

To predict FoG episodes, various methods have been proposed, such as fixed thresh-
olds and advanced deep neural network models. Machine learning and deep learning tech-
niques have shown better performance compared to other methods, despite the complexity
of sensor readings and the unpredictable nature of FoG episodes [1–3]. Specifically, several
successful attempts have been made utilizing data derived from sensors and applying a
selection of machine and deep learning methods in order to identify FoG episodes [4–10].
Common architectures such as LSTMs, CNNs, and combinations of both have been used,
and an inception based model was developed [11]. Finally, most studies have not validated
their methods across multiple datasets, providing no evidence that the suggested model’s
performance would be consistent on other datasets.

This study presents a modified inception base framework with easily adjustable
hyperparameters, providing a more generic approach to detect FoG episodes. Specifically,
the immediate contributions of this work are as follows:

• The introduction of two novel inception-based models, namely InSEption and
LN-Inception;

• A comparison of the iSPLInception model [11] and the proposed methods on the
Daphnet dataset;

• A comparison of the proposed models on a previously unused dataset by Ribeiro De
Souza et al. [12].

This paper is organized into several sections. In Section 2, we present existing method-
ologies and the current state of the art in FoG detection. Section 3 describes the datasets
used in the study, as well as the proposed network architectures. Next, in Section 4, we
present the results of the conducted experiments and provide details about the proposed
methodologies. Finally, in Section 5, we provide concluding remarks on the study and
highlight observations and recommendations for future research.

2. Related Work

The Daphnet dataset is a widely used benchmark dataset for the detection of FoG in in-
dividuals with Parkinson’s disease. It was developed as part of a study by Bachlin et al. [13]
and consists of data from three sensors measuring the gait of ten patients with Parkin-
son’s disease. Their proposed system for online detection of FoG was based on frequency
components of movements and achieved sensitivity and specificity of 73.1% and 81.6%,
respectively. Subsequent studies by the same authors showed potential to improve these
metrics to 85.9% and 90.9%, respectively.Furthermore, the system provides auditory guid-
ance and a distinct sound when an episode is detected.

In [11], the authors proposed a new deep learning architecture for FoG detection based
on the Inception Res-net model introduced by Google, which utilizes 1D convolution and
MaxPooling in parallel. The output is then fed to different convolution layers with varying
dimensions and a 1x1 convolutional layer. To evaluate the performance of iSPLInception,
tests were conducted on various human activity recognition datasets, including the Daphnet
dataset, which was split into specific training, validation, and test sets. The iSPLInception
model outperformed the other deep learning methodologies, with an F1 score of 94% on
the test set.

Moreover, a deep learning model called DeepFoG was developed in [4], for detection
of freezing of gait (FoG) episodes in Parkinson’s disease patients using wrist-worn IMU
sensors, which allows for the easy deployment of the proposed system. The authors
compared their proposed methodology to decision trees and XGBoost and found that the
DeepFoG model outperformed the other models, achieving 90% specificity and sensitivity
on a 10-KFold validation and 88% and 83%, respectively for LOSO CV.

In [14], the authors aimed to identify FoG episodes using the Daphnet dataset. They
employed several machine learning models, along with different preprocessing steps,
achieving an improvement in sensitivity compared to the literature. They reported that the
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best overall model was an ensemble method, but it is unclear whether the impact of the
prepossessing methods had any effects on performance.

Similarly, in [5], different convolutional LSTM architectures were developed to identify
FoG occurrences. The best model was composed of a combination of 1D convolutional
layers, squeeze and excitation blocks, and attention-enhanced LSTM layers. The authors
evaluated the performance of their model using two techniques: leave one subject out
(LOSO) and 10-fold cross validation. Furthermore, they used data augmentation to balance
FoG and non-FoG episodes, although the exact method used was not mentioned. The final
results indicated that the proposed deep neural network can outperform the competition
in terms of both sensitivity and specificity for the R10Fold and in AUC (0.945) for the
LOSO validation.

Tautan et al. [6] developed a similar approach to detect FoG episodes using the
Daphnet dataset as in [5]. They utilized a deep convolutional network based on AlexaNet.
The network consisted of five 1D convolutional layers; three dense layers; and several
dropout, batch normalization, and pooling layers. In this case, 10-KFold cross validation
was used, with nine of the samples used for training and one used for testing. Overall, the
best results were acquired from a balanced dataset, with the algorithm achieving a mean
specificity of 83.77% and a mean sensitivity of 81.78%.

In [15], an autoencoder was developed to denoise and enrich accelerometer and gyro-
scope data for FoG detection. The autoencoder consisted of 15 layers of 1D convolutional,
max-pooling, and upsampling layers. The output of the autoencoder was used as input
to several machine learning algorithms, including naive Bayes, SVMs, random forest, and
ensemble models for FoG or non-FoG episode classification. The random forest model
achieved the best performance, with a sensitivity of 90.94% and specificity of 67.04%, using
a 2-s window and replacing extreme values in the signal with the mean of the time series
(four-sigma rule).

Hssayeni et al. [8] proposed a more sophisticated model than those presented in
previous studies by employing an ensemble of models to predict motor performance, as
measured by the UPDRS-III test. The dataset used in their study consisted of measurements
taken from two sensors located on the wrist and ankle of 24 patients (PAMAP2). The authors
employed three different models in their ensemble, including a dual-channel LSTM trained
using transfer learning and two CNN-LSTMs (one using one-dimensional convolution
and the other using two-dimensional convolution). In addition to the raw signal and
frequency-related features, one of the models also included manually created features. The
predictions of the three models were then averaged to produce the final UPDRS-III score.
The evaluation metrics used were correlation and mean absolute error, which achieved
ρ = 0.79 and 5.95, respectively. These results demonstrated that the ensemble models were
highly effective in predicting the UPDRS score.

In [9], a bidirectional LSTM network was used to predict the risk of falls in patients with
multiple sclerosis using data from gyroscopic and accelerometer measurements collected
from sensors placed on patients’ core and legs. They compared the performance of various
machine learning models, and the best results were obtained with the Bi-LSTM model.

In ref. [7], the authors utilized, two- and three-layer LSTMs to detect freezing-of-gait
(FoG) episodes in Parkinson’s disease patients using plantar pressure data. The models
were validated using one-freeze-held validation, and the two-layered LSTM was found to
be superior.

Finally, the authors of ref. [10] used transfer learning to develop LSTM models to
predict FoG events in Parkinson’s disease patients using the Daphnet dataset. Their second
scheme of transfer learning consistently outperformed the existing recurrent model, with an
accuracy score over 90% in all prediction horizons and subjects’ training data percentages.

Most of the related works in this field rely on IMU sensors to identify Parkinson’s
disease (PD)-related symptoms. However, other types of sensors are also capable of
identifying these symptoms. For instance, Farhani et al. [16] used data from 15 patients
wearing an EMG sensor to train a Bi-LSTM. They employed a regularized evolutionary
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algorithm to set the hyperparameters of the model instead of doing so manually. Their
objectives were to classify the tasks each patient was conducting and to detect PD-related
tremors. Their results showed that the mean achieved accuracy for both tasks was over 84%,
which is well above chance levels. Cole et al. [17] used a similar type of sensor, in addition
to accelerometer readings, to identify freezing-of-gait (FoG) episodes. They employed a
DNN, which achieved a sensitivity of 83% and a specificity of 97% on a per-second basis.

Research shows that deep learning architectures have achieved significant success in
detecting FoG episodes, especially when combined with certain preprocessing methods.
Among the state-of-the-art architectures used for FoG detection, convolutional and recur-
rent neural networks are considered the most effective. Convolutional networks offer the
advantage of automatically identifying and extracting features without the need for manual
feature engineering. On the other hand, recurrent networks are able to capture long-term
dependencies in the data and are therefore often effective predictors. In addition to these
architectures, attention mechanisms are also commonly used to further weight the connec-
tions within the network. Combining all these methodologies can achieve state-of-the-art
results, as demonstrated in a recent study [5].

However, it is worth noting that the Daphnet dataset is commonly used as a benchmark
in FoG detection research, despite being relatively small. There is a clear need for larger
datasets with more patients to bridge this gap. A new dataset introduced by Ribeiro
De Souza et al. [12] containing data from IMU sensors from 35 patients aims to address
this issue.

Moreover, it is observed that most studies employ a single dataset to evaluate their
proposed model. It would be beneficial for future research to evaluate models on multiple
datasets to ensure their effectiveness across different patient populations and settings.

The selection of IMU datasets was primarily influenced by their widespread avail-
ability in wearable devices, which allows for continuous monitoring of patients without
requiring special equipment or environments. Medical advisors of the ALAMEDA project
also recommended the use of a particular sensor due to the clinical focus of the project to
investigate digital biomarkers using these type of sensors in home environments. More-
over, IMUs have been extensively used in previous studies to monitor Parkinson’s disease
symptoms compared to other types of sensors [18]. Finally, as mentioned before, a common
issue for labeled PD datasets is the limited number of participants. This issue is observed
less often in IMU datasets. For instance, in [12], the IMU based dataset includes 35 patients,
which is a relatively large sample compared to most datasets used for this purpose.

This study draws inspiration from the inception-based architecture presented in [11],
as well as successful convolution-based approaches. Furthermore, the reweight mechanism
that was used in the literature drives us to include such a component in our proposed
methodologies. An inception-based framework was created that is easily parameterized
and adjusted to sensor-based datasets with very good performance, as we demonstrate
herein. More specifically, we developed two models that improve upon the previously
proposed inception module, making it more appropriate for smaller datasets and reducing
the risk of overfitting by reducing the number of parameters while still capturing hierar-
chical dependencies. Additionally, the models employ squeeze and excitation techniques
to reweight the convoluted channels based on the information they contain, resulting in
improved performance. Finally, a previously unused dataset was used to validate the
models’ effectiveness, combined with a well-established benchmark dataset.

3. Materials and Methods

In this section, the foundations are set in order to present how the proposed models
function, the datasets that were utilized in order to evaluate the approaches, and the
preprocessing pipeline that was followed.
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3.1. Datasets

In this chapter, the two datasets that were used are described, along with their char-
acteristics. The datasets are the well-known benchmark Daphnet dataset and a newly
introduced dataset of medium size [12]. In Table 1, a comparison between the individual
characteristics of each dataset is presented. Analysis revealed that the two datasets possess
distinct characteristics that present challenges in accurately detecting episodes of freezing
of gait. Using both datasets in combination offers a comprehensive approach to test and
evaluate the performance of a model.

Table 1. Comparison of the datasets.

Parameter Daphnet IMU

Subjects 10 35
Distribution 7 males, 5 females 19 males, 16 females

No. of Sensors 3 1
Placement Shank, lower back, thigh Leg
Readings Accelerometer Accelerometer, gyroscope

Tests Conducted 3 3 (not all subjects)
Annotation Video review Video review

Features 9 signals 6 signals

3.1.1. Daphnet

The Daphnet dataset, which was created through a collaboration between the Tel Aviv
Sourasky Medical Center and the Wearable Computing Lab of ETH Zurich, is an excellent
resource for researchers in this field. It provides a comprehensive collection of data from
PD patients, including measurements of movement and other clinical data [13].

The aim of the project was to develop a system that could detect FoG episodes and
provide auditory notifications to patients. The dataset was created by collecting data from
10 PD patients (7 males and 3 females). The data collection process involved three stages:
walking in a straight line with several turns, normal walking with 360-degree turns with
were included, and conducting daily activities.

The total duration of the experiment was approximately 30 min per patient. During
data collection, each subject wore 3 sensors: on their shank, their lower back, and their
thigh. These sensors transmitted accelerometer measurements at a frequency of 64 Hz,
resulting in a 9-signal dataset. The dataset annotated was done through video review of all
tasks by specialized medical personnel.

The dataset contains three types of labels. The first type pertains to data that were
gathered from patients before any experiments were conducted, during which the subjects
were in a standing-by position. We excluded these examples from our approach. The
remaining labels correspond to instances of freezing of gait (FoG) and normal walking.

Regarding the analysis of the dataset, we concatenated the data of all subjects together,
excluding the “idle” samples. The results for each feature are depicted in the Table 2 below.

The analysis revealed that out of the nine features, only two exhibited a symmetric
distribution, while the remaining features are either slightly or extremely skewed. Further-
more, most features demonstrate extremely large kurtosis values, indicating a leptokurtic
distribution and a higher likelihood of outliers. These observations suggest that the features
do not conform to a normal distribution, making it more challenging for a model to learn
from them. To assess the stationarity of each time series, an augmented Dickey–Fuller
(ADF) test was conducted [19], which is a common way to test for a unit root in time-series
data [20]. The null hypothesis of the ADF test assumes that the time series has a unit
root, implying that it is non-stationary. The alternative hypothesis, on the other hand,
assumes that the time series is stationary, indicating the absence of a trend. According to
the results, the time series are stationary, which is expected in the context of monitoring
walking patterns using accelerometers.
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Table 2. Descriptive statistics of Daphnet.

Measure ankle(hr) ankle(v) ankle(hl) thigh(hr) thigh(v) thigh(hl) trunk(hr) trunk(v) trunk(hl)

mean −104.05 995.17 244.86 3.15 765.19 145.24 56.65 957.72 18.42
std 577.2 363.63 322.75 567.22 369.66 275.53 202.38 196.73 218.05
max 27,651.0 31,493.0 29,437.0 22,596.0 22,596.0 22,596.0 6707.0 24,298.0 4300.0
min −31,234.0 −32,255.0 −31,487.0 −21,846.0 −29,673.0 −23,908.0 −3951.0 −1323.0 −4242.0
kurtosis 305.4 1084.88 1447.31 77.16 271.94 1121.437 6.49 369.59 12.37
skewness 3.94 7.57 2.02 1.97 0.36 −11.39 0.14 0.90 −0.68

3.1.2. IMU Dataset

A relatively unused dataset was introduced in [12]. The dataset contains data from
35 patients diagnosed with Parkinson’s disease. The sample consists of 16 females and
19 males. The sensor used was an inertial measuring unit (IMU) that transmitted accelerom-
eter and gyroscope data of the 3 axes using a frequency of 64 Hz, producing a total of
6 signals.

In order to evaluate their straddle, the subjects had to conduct several 360-degree
turns, with a different rotation each time; the duration of this test was 2 min. Most of
the patients completed 3 sessions, while 12 of them completed 2 sessions, and 8 of them
only completed 1 session. For each session, the total time of FoG was provided, along
with other metrics, including H&Y score. Additionally, except the IMU measurements,
video recordings of each test are provided. Based on these recordings, specialized medical
professionals were able to annotate the data of each subject and identify FoG episodes.

An analysis comparable to that performed on the Daphnet dataset was carried out to
gain a deeper understanding of the characteristics of the IMU dataset.

An analysis comparable to that performed on the Daphnet dataset was carried out to
gain a deeper understanding of the characteristics of the IMU dataset. This analysis (as
shown in Table 3) included the computation of statistical measures such as mean, standard
deviation, minimum, and maximum values, among others. Additionally, an augmented
Dickey–Fuller test was conducted to determine the stationarity of the time series.

Table 3. Descriptive statistics of the IMU dataset.

Measure ACC ML ACC AP ACC SI GYR ML GYR AP GYR SI

mean 0.03 −0.25 0.98 −3.76 0.74 −1.57
std 0.56 0.42 0.33 35.01 41.33 128.96

max 8.56 8.08 8.09 805.75 657.2 1149.8
min −8.56 −8.76 −7.21 −832.83 −337.26 −1039.65

kurtosis 8 8 8 8 8 8
skewness 2.83 2.83 2.83 2.83 2.83 2.83

Similar to the Daphnet dataset, analysis of the IMU dataset revealed that the skewness
and kurtosis of the 6 features indicate a deviation from the normal distribution. Addition-
ally, all features exhibited a leptokurtic distribution. As in Daphnet, the ADF test revealed
that all features were stationary, which is expected, considering the nature of the data. It is
noteworthy that some measurements showed a small range between the minimum and
maximum values, which can be attributed to the quality and limitations of the sensor.

It is worth noting that if the ADF test had revealed non-stationarity in the features,
certain preprocessing methods such as differencing may have been required to properly fit
any model and ensure the validity of the results [21]. Additionally, to account for fluctua-
tions and normalize the examples, normalization techniques such as batch normalization
would have been incorporated into the proposed models.
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3.2. Preprocessing
3.2.1. Oversampling Methods

Due to the nature of the selected datasets, there was an imbalance, which is a common
issue when dealing with real-world data. Oversampling and undersampling are common
techniques used to address this issue [22,23].

In this study, oversampling was utilized, as it has been shown to be more effective
than undersampling in many cases of binary classification [24]. The literature provides
several sophisticated oversampling techniques, particularly for signal processing. In [22],
such methods were discussed and tested using a CNN to classify the state of Parkinson’s
patients. The proposed methods included rotation, permutation, time wrapping, scaling,
cropping, and magnitude wrapping. Among the mentioned methods, a combination of
signal rotation and permutation achieved the most significant improvement for the task. A
similar data augmentation technique, signal inversion, was also employed in [5].

To measure their effects and improve the classification accuracy of our networks, we
applied permutation of the window and rotation of the original signal in this work.

Permutation: First, the signal is segmented into N windows of equal length, where N
depends on the length of the dataset (see Section 3.2.2); then, the window is divided into
Z subwindows. In this study, 5 sub-windows were used, which were randomly shuffled
and concatenated together, recreating the initial representation. By introducing a random
factor to the order of the data, we aimed to generate diverse samples from the original
dataset, simulating examples from the minority class that may not have been captured in
the original dataset.

Rotation or Inversion: The signal in this case is rotated, according to a linear transfor-
mation. More specifically, a 180-degree turn was applied in the x axis for each sensor. The
method of rotating the signal helps to simulate a different scenario wherein the position
and orientation of the sensors have changed but the underlying pattern or phenomenon
being recorded remains unchanged. This approach has several advantages over other
augmentation methods, as it still follows the “real” data distribution while providing a
wider variety of examples to train on. Thus, the model can become more robust and better
at handling variability during deployment.

3.2.2. Window Partitions

Window Segmentation & Overlap: In addition to data augmentation techniques,
windowing is another common practice in signal processing for analysis of time-series
data. By dividing the signal into overlapping windows, it is possible to extract features and
patterns that are specific to different segments of the signal. In this study, the size of the
window was determined based on the frequency of the recordings and the distribution of
FoG episode duration, resulting in windows with lengths of 256, 196, and 128 observations
corresponding to 4, 3, and 2 s at a frequency of 64 Hz, respectively. To generate more
examples and extract as much information as possible, an amount of overlap was used.
The window size was rolled by a constant value of 4, 16, or 96 depending on the test. The
label for each window was determined by counting the individual labels and retaining the
most frequent one. Finally, the resulting windows were used for feature extraction or the
application of deep learning methodologies such as convolutional operations.

3.3. Model Architecture
3.3.1. Components

In this section, the building components that were used in order to construct the
proposed models are discussed and explained in order to highlight their function.

Inception module: Both proposed models, InSEption and LN-Inception, are inspired by
the InceptionTime model of Fawaz et al. [25]. The architecture is depicted in Figures 1 and 2.
Generally, the purpose of this model is to apply parallel convolutions for classification
of time series data. The architecture used is quite similar to Inception-v4; the core of the
network is the inception module. This consists of a bottleneck layer, 3 parallel convolutional
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layers, and 1 max pooling plus a bottleneck convolutional layer. Each layer accomplishes a
different task. The bottleneck layer reduces the dimensions of the original time series by
applying a 1D convolution of a number of filters with a stride of 1 so that the overall model
becomes simpler and probably less prone to overfitting. The three parallel 1D convolutions
that follow the Bottleneck layer are able to extract several features from different levels.
Additionally, the max pooling with the Convolutional layer, similar to the bottleneck, is
responsible for making the model more stable and less susceptible to noise. Finally, all
outputs are concatenated together, creating a new representation of the original multivariate
time series. This representation is normalized via a batch normalization stage, and “ReLU”
is applied in the end.

10 Conv

20 Conv

40 Conv

Bottleneck

Input Multivariate TS Output Multivariate TS

Bottleneck 

Max Pooling 

Figure 1. The architecture of an inception module.

Residual Connections: Another characteristic that improves the performance of models
and secures the constant gradient flow is the shortcut module. This module is applied
to every other stacked inception module and transforms its input. After applying these
inception procedures, the final representation of the multivariate time series is reduced
by global average pooling, and the output is then passed through several fully connected
layers. Finally, “softmax” or “sigmoid” activations are utilized, depending on the classes
that have to be predicted.

Squeeze and Excitation module: The squeeze and excitation module was introduced
by Hu et al. [26] in an attempt to enhance the representation ability of the networks
by incorporating the relations of the channels into a final multidimensional matrix via
weighting. More precisely, this particular module has two parts: (a) the squeeze part and
(b) the excitation part. The first section is tasked with aggregating the input across channels
to create a general depiction of the features. Then, the excitation block is able to reweight
the available information in order to emphasize more descriptive channels. The SE blocks
can be stacked together to extract and recalibrate features from different hierarchies. The
architecture consists of a global average pooling layer that is able to extract information
throughout the channels. Then, in order to reduce the dimensions of the input and the
complexity of the calculations, a bottleneck layer is applied using "ReLU" activation. This
layer is not fixed; instead, its size is determined empirically to increase or decrease the
squeeze operation. The authors suggest a ratio of 16, meaning that the original number
of channels is divided by 16 to determine the number of neurons in the bottleneck stage.
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Finally, reweighting is achieved through a fully connected layer using “sigmoid” activation,
and a rescaling operation follows to restore the dimensions of the input. This block can
be applied to inception networks. The SE block can be applied either after the inception
module or immediately after the residual connection.

channels

time
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ep
tio
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ep
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connected 

layers

Output

Residual connections

Conv.

Figure 2. The architecture of InceptionTime.

3.3.2. Proposed Models

The general belief that is supported by research evidence indicates that the an inception
network is the state of the art for complex datasets with multiple dimensions, such as images
or videos. In [11,25], the authors showed that an inception network can be successfully
applied to time-series data. The methodologies used in the literature consist of an inception
network with 3 parallel layers of convolutions. To the best of our knowledge, except these
two implementations, there are no other examples of implementations that use this method
or a similar method for the selected datasets.

Light-Normalized Inception: The first proposed model is a lighter inception model
with heavy regularization procedures, namely LN-Inception. More specifically, the light
inception module consists of only 2 parallel convolutional operations added to the max
pool plus bottleneck stage in an attempt to simplify the network in order to make it faster
and less prone to overfitting for small datasets such as Daphnet. The modified Inception
module is depicted in Figure 3. A batch normalization layer is used first on the input to keep
the mean at 0 and the standard deviation at 1. The residual connection module remains as
proposed in the original literature. Finally, after the inception operations, a dropout layer
follows with a 50% rate, similarly to that proposed in [4]. This results in an enhanced ability
to precisely learn more the dependencies of the created features, mitigating the threat of
overfitting. Next, instead of global average pooling, an average max pooling layer is used.
The idea is that we want to extract the most prominent features after the inception layers in
order to not dilute and normalize the result of the transformation. Finally, several dense
layers accompanied by dropout are added to the network to process the embeddings for
the final classification. These layers use “ReLU” activation.

InSEption: The second proposed network utilizes the benefits of the inception module
with the addition of squeeze and excitation blocks. These blocks are able to reweight the
multichannel outputs of the convolutions and isolate the most beneficial features, even
further enhancing the performance of an inception network. First, the inception module
was modified to use filter sizes of 5 and 7, also incorporating a bottleneck layer. The module
is depicted in Figure 4. The squeeze and excitation block remained the same, along with
the residual connection operation; these two modules are described in Section 3.3.1. More
precisely, after each inception module, a squeeze and excitation stage follows. Then the
residuals are incorporated in the embedding after every other layer. There, an additional
Squeeze and excitation block is applied. After these operations, the feature extraction
stage of the network is concluded by again applying an SE block to determine the final
weights of the vector, followed by a dropout layer of 50% and a global average pooling
layer to aggregate the channels into a single channel. Finally, similarly to the LN inception,
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a number of dense layers with dropout is used to produce the final probabilities using a
“sigmoid” activation.

Concatenate

Conv1D
1 x 3

Previous Layer

MaxPool1D

Conv1D
1 x 5

Conv1D
1 x 1

Figure 3. An overview of light inception module.

Concatenate

Conv1D
1 x 5

Previous Layer

MaxPool1D

Conv1D
1 x 7

Conv1D
1 x 1

Bottleneck
1 x 1

Figure 4. An overview of the InSEption module.

In addition to their improved performance, both proposed networks were designed in
a modular manner to allow for easy modification of their hyperparameters. This flexible
design makes it possible to tailor the networks to specific requirements. Therefore, no
specific structure is described in this part; instead, the overall strategy of block sequences are
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examined in this study. Finally, this modular approach also allows for future improvements
and updates to the models as new research emerges.

3.4. Experimental Setup
3.4.1. Hardware and Software Specifications

All experiments required access to a server, which was made available by the univer-
sity’s laboratory. The specifications of this computer were an Intel i9-12900k, 64 GB of RAM,
and an NVIDIA GeForce RTX 3090 graphics card. In addition, all the neural networks were
developed using Keras [27], a Library that provides an API to Tensorflow, which allows
for easier and simpler development of neural networks, better understanding of possible
errors, detailed documentation, and a large community for support. In addition, other
libraries were used, such as Scikit Learn for preprocessing tasks and error metrics [28] and
NumPy for linear algebra calculations [29].

3.4.2. Comparative Methods

In order to compare our inception-based models, we employed a similar method that
was trained on the Daphnet dataset and presented in [11], namely iSPLInception.

The architecture of the model is described as follows. First, the data were passed
through a batch normalization layer; then, several inception modules with residual connec-
tions were applied. Finally, the output was transformed through a dense layer of “ReLU”
activations, followed by global average pooling to aggregate the channels. The final layer
depends on the application. For the case of the Daphnet dataset, “softmax” activation
was used.

It is worth noting that this model’s inception module differs than that of the blocks
proposed in this case. More specifically, they use 1 × 1, 1 × 3, and 1 × 5 parallel con-
volutions, with a bottleneck layer applied before, while the max pooling plus bottleneck
application is the same.

Furthermore, the authors employed a specific train–validation–test data split. The
data partition was implemented as follows. For testing purposes, only the S2-1, S4-1, and
S5-2 were used. For validation, the S2-2, S3-3, and S5-1 were utilized, and the model was
trained on the remaining sub datasets. For this case, a 3 s (192 examples) window was used
with 50% overlap (96 examples). Finally, out of 3 available classes of the dataset, namely,
inactivity, FoG episodes, and normal walking, the latter two were retained, and all the
observations of the first type were discarded.

The class distribution for each part of the split was as follows: 8.7% of the data were
freeze examples in the training set, 7.20% in the test set, and 16% in the validation set.

To facilitate the comparison between the proposed methodologies, two additional
benchmark models were developed. The first model is a custom CNN architecture con-
sisting of six consecutive convolutional layers with a ReLU activation function. The first
two layers have a filter size of 7, the next layer has a filter size of 5, and the last layer
has a filter size of 3. No pooling was performed between the convolutions due to the
limited dimensions of the original data. The model uses a global max pooling stage for
feature selection extraction of the most prominent features. The last five layers of the
model are composed of dense and dropout neurons to fine tune the features and predict
the final sample type. The second benchmark approach is a custom LSTM architecture.
Similar to the CNN architecture, this model has six LSTM layers, followed by the same
sequence of five dense and dropout layers as in the CNN architecture. The benchmark
models were designed with a similar architecture as that of the proposed model to ensure a
fair comparison.

4. Results
4.1. Performance of the Models on the Daphnet Dataset

As mentioned before, the particular split was unbalanced; thus, in order to enhance
the learning ability of the model, an oversampling method was employed only in the
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training phase. Two ways of oversampling were selected: one using signal rotations by
90 degrees and another using signal permutations. The amount of examples generated
from each method was set following a cumulative strategy; examples of the minority class
are generated until they reach 20% using signal rotations and, an additional 10% is added
using permutation. Overall, the minority class of the datasets reaches 30%. This procedure
was only applied to the training dataset and not the test and validation sets.

The configurations of the two proposed models were determined after several runs
based on empirical evaluation using the proposed metrics and are illustrated in Table 4.
Regarding the InSEption model, the framework and modules described in the previous
section were used. More precisely, the final architecture consisted of six inception layers
with the squeeze and excitation add-on followed by five dense to refine the information
extracted from the convolutions. This network is quite deep and complex, which is needed
to extract all useful information from all the different patient datasets. The loss function
used was binary cross entropy, which is the most common function for binary classification
purposes. The batch size for training of the network was 128, with a learning rate of 0.0001
utilizing the Adam optimizer and its momentum adjustments. For the later dense layers,
the amount of dropout was set to 25%. Finally, to avoid overfitting, early stopping was
used, measuring the error of the validation set and stopping the training phase when
70 consecutive epochs did not result in any improvement in loss reduction.

Table 4. Configuration of InSEption.

Parameter InSEption LN-Inception

Inception layers 6 6
Dense layers 5 5

Residual connections Yes Yes
Bottleneck Yes No
SE blocks Yes No
Batch size 128 64

Learning rate 0.0001 0.0001
Dropout rate 0.25 0.25

The most significant parts of the InSEption network, the inception module and its
connection to the squeeze and excitation block, are shown in Figure 5.

Figure 5. An overview of the InSEption layer with SE added.

The parameters defined in the LN-Inception model are quite similar to InSEption after
being validated by a series of experiments; again, six inception layers were used with 100,
80, 60, 40, 20, and 8 filters. Another five dense layers were added after, with 128, 64, 32, 16,
and 8 neurons, respectively. The learning rate was 0.0001, and the dropout for the dense
section of the network was 0.25. Finally, residual connections were included, but the initial
bottleneck stage was excluded. The configuration is summed up in Table 4. For model
training, the batch size was set to 64, along with 5000 epochs, with early stopping after
70 epochs.

The CNN benchmark model and the LSTM model have similar configurations. The
CNN layers in both models had sizes of 100-80-60-40-20-8, while the dense layers were
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128-64-32-8-1. The batch size for the CNN model was 128, and the learning and dropout
rates were set to 0.0001 and 0.25, respectively. The LSTM model had LSTM layers with
sizes of 256-128-64-32-16-8 using a “tanh” activation function, and the batch size was set to
64. Both architectures are shown in Table 5.

Table 5. Configuration of Daphnet benchmark models.

Parameter Custom CNN Custom LSTM

CNN or LSTM layers 6 6
Dense layers 5 5

Batch size 128 64
Learning rate 0.0001 0.0001
Dropout rate 0.25 0.25

Regarding the results of the proposed models, F1 score was used as in the benchmark
paper. The metrics were set up in the “micro” setting, which is similar to accuracy. However,
accuracy for imbalanced datasets is not a suitable metric due to the increased weight that
allocates to the majority class. Nevertheless, in order to compare our models with the
particular inception-based model, this was necessary.

Comparing our methodologies with the existing method, it is evident that both In-
ception modifications perform better than the benchmark. In terms of accuracy or micro
F1 score, the InSEption model outperforms the other two models 0.5%. However, the real
improvement in performance is in terms of the macro F1 score, for which the proposed
models reach 71% and 67%, meaning that they outperform the benchmark by 6% and 2%,
respectively. Furthermore, in terms of precision and recall, the iSPLInception model fails
to perform better than the proposed models. For the precision, which indicates the ability
to retrieve relevant instances, the difference is 2% for the InSEption method, while for the
recall, which measures the fraction of the total relevant items retrieved, there is a significant
improvement by 5% when utilizing the InSEption network. Additionally, both benchmarks
fail to be comparable with the inception-based models in terms of macro F1, precision, and
recall, while in terms of micro F1 or accuracy, their results are closer to the best. However,
due to the imbalances of the data, accuracy is not suitable to measure the performance,
which we expect to be quite high. Finally, the CNN model seems to perform better than
the LSTM model, reinforcing our initial strategy, which involves the development of an
approach based on convolutions. The complete performance of the models can be found in
Table 6.

Table 6. Literature comparison of inception neural networks.

Metric Custom
CNN

Custom
LSTM

iSPLIncep-
tion [11] LN-Inception InSEption

Micro F1 92.82% 91.3% 93.52% 93.56% 94%
Macro F1 56% 53% 65% 67% 71%
Precision 74% 58% 79% 80% 81%

Recall 54% 53% 61% 62% 66%

In conclusion, the impact of normalization, squeeze and excitation, and oversampling
using more sophisticated and domain-specific methods is quite significant for this split.
However, in order for these methods to perform even better, larger datasets are required.

4.2. Performance of the Models on the IMU Dataset

For comparison and evaluation purposes, a new dataset was utilized [12]. The pre-
processing procedure used was similar to that applied in the previous cases. The dates
were concatenated into 2-second windows with an overlap of 16 observations in order to
create enough examples from each patient. This process was repeated for each patient. The
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labels were generated again based on the most observed label in each segment. Finally, the
datasets were concatenated together to create a single dataset.

For cross validation, a five-KFold was selected using the stratified KFold method
to ensure that the proportions of each class were maintained in the subdatasets. This
allowed for five different training and validation procedures to be conducted, with a more
conventional split of 80% for training and validation and 20% for testing. Out of the 80%
that was used for non-testing purposes, 10% comprised the validation set. The performance
of the model was evaluated using three common metrics: specificity, sensitivity, and macro
F1. These metrics provided insight into the model’s ability to correctly identify instances of
each class and the overall balance between precision and recall.

Initially, tests were run on the imbalanced dataset without implementing any balancing
techniques; however, the results were not up to the desired level of accuracy. To address this
issue, additional samples were created specifically for training purposes using the methods
described in Section 4. The inverse signal method was used to generate samples until the
imbalanced class reached 25%, and an additional 10% was created using the permutation
method. The application of these techniques greatly improved the metrics and elevated the
accuracy of the network’s predictions. It is worth noting that the oversampling methods
were only applied during training.

Again, as in the other experiments, the framework remained the same. The final
architecture of the InSEption network was identical to that used in the iSPLInception
comparison. The specific parameters are illustrated in Table 7. The only differences are
the dropout rate and the batch size, which are 15% and 32 in both networks, respectively.
Other than that, both the network layers and size were the same. All the parameters were
selected based on several experiments and their results.

Table 7. Configuration of inception-based models.

Parameter InSEption LN-Inception

Inception layers 6 6
Inception dimensions 120-100-80-60-40-20 120-100-80-60-40-20

Dense layers 5 5
Dense layer dimensions 128-64-32-16-8-1 128-64-32-16-8-1

Validation split 0.1 0.1
Residual connections Yes Yes

Bottleneck Yes No
SE blocks Yes No
Batch size 32 32

Learning rate 0.0001 0.0001
Dropout rate 0.15 0.15

The parameters used in the LN-Inception model were kept the same as those used in
the InSEption model. However, the practical difference between the two networks lies in
the absence of bottleneck and squeeze and excitation blocks in the LN-Inception model.
This change in the architecture is intended to result in a simplified model that is still capable
of producing high-quality results.

The architecture of the benchmark models was kept the same as in the previous
experiment; the only changes were the batch size, which was set to 32, and the dropout
rate, which was 15%. The overall architecture and hyperparameters can be found in
Table 8. In terms of evaluation metrics, we decided to expand beyond the sensitivity,
specificity, and F1 score that were used in previous tests, since there were no models for
comparison. Thus, we included two additional metrics in our analysis: the area under
the curve and geometric mean. These metrics provide a more comprehensive picture
of the model’s performance by taking into account the results of the confusion matrix
in settings other than the usual F1 score [30,31]. Moreover, for the geometric mean, we
substituted the true positive and true negative values with their success rates to improve
interpretability. This substitution is equivalent to using sensitivity and specificity, and it
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ensures that the results are bound between 0 and 1, with 1 indicating the best performance;
this approach was introduced in [32,33]. Regarding the results of the two models for this
dataset, the InSEption module performs better than LN-Inception by a slight margin. More
specifically, in terms of sensitivity, the difference for the first model is 1%, although in
terms of specificity, both scored the same. The F1 and AUC scores indicate that, again, the
squeeze and excitation blocks were beneficial, with a 0.3% and 0.5% difference against the
LN-Inception, respectively. The scores that are shown in Table 9 are the means of the 5K
cross validation procedures that were conducted.

Table 8. Configuration of IMU benchmark models.

Parameter Custom CNN Custom LSTM

CNN/LSTM layers 6 6
CNN/LSTM dimensions 120-100-80-60-40-20 256-128-64-32-16-8

Dense layers 4 4
Dense layer dimensions 128-64-32-8 128-64-32-8

Validation split 0.1 0.1
Residual connections No No

Bottleneck No No
SE blocks No No
Batch size 32 32

Learning rate 0.0001 0.0001
Dropout rate 0.15 0.15

Table 9. Results of the proposed neural networks.

Metric Custom CNN Custom LSTM LN-Inception InSEption

Sensitivity 97% 97% 97% 98%
Specificity 96% 97% 99% 99%
Macro-F1 92% 93% 96.9% 97.2%

Geometric mean 96.49% 97.0% 98.0% 98.49%
AUC 96.47% 96.9% 98.1% 98.6%

Compared to the benchmark models, the two proposed models show a significant
improvement in terms of macro F1 score, with increases in sensitivity, specificity, geometric
mean, and AUC between 1 and 2%, depending on the metric. Overall, the results on this
dataset suggest that it is easier for a model to correctly predict examples, possibly due to
the higher number of positive class examples compared to the Daphnet dataset.

In conclusion, the proposed methods have proven to be highly effective in classifying
time-series data, particularly in detecting freezing-of-gait (FoG) episodes. The results show
that the models are capable of accurately identifying both classes with high F1 and AUC
scores, demonstrating their ability to effectively learn patterns and distinguish between
FoG and normal walking patterns. Furthermore, the oversampling techniques employed
to balance the dataset only during training were proven to be effective, as they did not
compromise the model’s ability to predict the majority class, instead improving its ability
to detect the minority class. During the prediction stage, the class distribution remained
similar to the original dataset, with approximately 18% of instances classified as FoG and
82% classified as normal. These results highlight the strength of the proposed models and
suggest that they could be effectively utilized in real-world applications for monitoring
and detection of FoG episodes in Parkinson’s disease patients.

5. Discussion and Future Work

The aim of this work was to explore the potential of various deep learning architectures
for prediction of episodes of freezing of gait (FoG), a debilitating symptom that significantly
affects the quality of life of Parkinson’s disease (PD) patients. The early detection and
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classification of FoG episodes can aid practitioners in understanding the symptoms of each
patient and in developing more effective strategies to treat the disease.

To achieve this goal, two inception-based models were introduced. The first model
is named LN-Inception, and it is a simpler version of the original inception network for
time-series classification [25]. Practically, the number of parallel convolutions was reduced,
and the normalization levels increased. The second proposed methodology is the InSEption
network, which, with the exception of the inception modules, integrates squeeze and
excitation blocks after each convolutional stage.

In order to evaluate the effectiveness of the proposed models, the Daphnet dataset was
utilized, and results were compared to existing literature, specifically the iSPLInception
network, which is the only inception network that has been used with this dataset. The
findings indicate that both proposed models surpassed the state-of-the-art performance in
terms of all metrics that were used in [11]. The most significant improvement was observed
in the macro F1 score, for which the models demonstrated an improvement of 2% and 6%,
with the InSEption network exhibiting the highest performance.

The last experiments were carried out utilizing an additional dataset related to FoG
(freezing of gait) episodes, which was collected from an IMU (inertial measuring unit)
sensor. This resulted in six features for each participant. It is important to note that this
dataset is relatively new, and no established benchmarks exist, making this study unique
and potentially contributing to the creation of benchmark standards for future research
in this area. For the evaluation, data for each patient were organized similarly to the
Daphnet dataset.

Regarding the results, it can be observed that both models performed exceptionally
well, achieving high scores for both the F1 and AUC metrics, with scores of 96.9% and
97.2% for F1 and 98.1% and 98.6% for AUC, respectively. These scores were notably higher
than those of the two custom models that were developed for comparison. Furthermore,
both had sensitivity, specificity, and GM scores over 97%. The reason we utilized AUC
and GM as evaluation metrics in this setting is that there is no established benchmark in
the literature for comparison that specifies the metrics to be used. In addition, the use of
these metrics allowed us to further validate the effectiveness of our models. The results
demonstrated that our proposed models outperformed created custom benchmark models
in terms of these metrics. The best-performing network was, again, InSEption. In order for
these results to be achieved, the abovementioned oversampling methods were employed.

In summary, this study highlights the benefits of using the inception mechanism to
extract multiple hierarchical features from signal data. Additionally, the positive impact of
incorporating squeeze and excitation blocks and problem-specific oversampling methods
further enhances the overall performance of the proposed models. The results of this study
demonstrate the potential of the inception-based deep learning architectures for prediction
of FoG episodes in PD patients and their suitability for integration into wearable IoT
devices for real-time monitoring and early intervention. Additionally, due to the different
features of the two dataset and their satisfactory performances, the inception methodologies
constitute a potentially very efficient way to treat signal or sensor datasets.

In regard to future research, it may be worthwhile to investigate the use of time-
dependent modules, such as gated recurrent units (GRUs), long short-term memory (LSTM)
networks, or attention mechanisms, to further exploit the features extracted from the con-
volutional layers and incorporate additional temporal information, as has been successfully
done in previous studies [5,9]. Additionally, it would be valuable to evaluate the proposed
methodologies on larger Parkinson’s-related datasets, such as mPower, or on other activity
recognition datasets in order to determine their generalizability and efficacy across a wider
range of tasks. Furthermore, in addition to the proposed variations, transfer learning could
be explored as a potential approach, building upon the methods introduced in previous
works [8,10]. With transfer learning, the proposed models could be trained extensively on a
large dataset, then fine-tuned for predictions on another dataset, potentially incorporating
more generalized knowledge and avoiding overfitting. These avenues of research could
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help to further validate the potential of these models for use in wearable IoT devices for
real-time monitoring and early intervention in conditions such as freezing of gait (FoG).
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The following abbreviations are used in this manuscript:

FoG Freezing of gate
PD Parkinson’s disease
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DL Deep learning
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