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Abstract: This paper proposes a unified framework for the detection of statistically significant changes
in time series related to Bitcoin transactions. The time locations of these changes are linked to the
occurrences of events which could be further investigated aiming to reveal potential illicit activity.
The proposed framework includes: (a) the extraction of 28 features of interest in the form of time
series from the Bitcoin transaction history; (b) the selection of features among the extracted ones
based on the Partition Around Medoids clustering approach; and (c) the change point analysis of
the multivariate time series which is formulated by the medoid time series of each cluster. This
analysis enables the identification of structural breaks in the underlying behavior of the time series of
interest at certain time points. The proposed framework is applied on the Bitcoin transactions of two
entities that have been involved in illicit activities, namely Pirate@40, who orchestrated a high-yield
investment programme, and the MintPal Bitcoin exchange platform that was hacked. The analysis
results indicate that the estimated change points can be linked to certain event occurrences which may
affect the transaction activity and could be further investigated for potential links to illicit actions.

Keywords: Bitcoin transactions; change point detection; time series clustering; illicit activities; forensics

1. Introduction

Bitcoin has known meteoric rise in its popularity since its creation in 2008, constituting
a lucrative market reaching up to more than USD 1.2 trillion1 over the years. In contrast to
traditional currencies, Bitcoin does not rely on administrative institutions, such as banks,
to ensure trust, but rather on the transparency of its transactions. All Bitcoin transactions
are stored on the blockchain, a distributed ledger technology, and are publicly available.
However, despite its inherent transparency, Bitcoin offers pseudo-anonymity to its users
since Bitcoin transactions are not linked to entities but to Bitcoin addresses; thus, there
is no direct connection to the entities that participate to the transactions. Due to this
characteristic, as well as the ease of access it offers, Bitcoin has been used for a number of
illicit activities, ranging from Ponzi schemes to black markets (see, for example, Sándor
and Fehér 2019).

Bitcoin forensics capitalise on the vast amount of available transaction data in the
blockchain (more than 480 GB of transactions accumulated to date2) with the goal to detect
illicit activities. Such approaches typically analyse Bitcoin transactions by extracting several
features aiming to determine whether they are related to criminal actions. The majority
of existing methods employ classification models to infer whether an address is involved
in illicit activities by extracting static features, i.e., without considering the evolution over
time (Oliveira et al. 2021; Ranshous et al. 2017; Toyoda et al. 2017; Yang et al. 2022). In
particular, most commonly, the whole timeline of transactions related to an address is
summarised into static features; for example, the transaction volume of an address over the
whole activity duration is typically summarised into a single value (Farrugia et al. 2020;
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Lin et al. 2019; Toyoda et al. 2017, 2018a, 2019). However, this approach fails to capture
the dynamic evolution of features of interest over time, which may add further valuable
insights to the analysis of the history of transactions, thus enabling additional inferences
regarding specific addresses and transactions in real time and not only retrospectively.

This paper focuses on the analysis of temporal features extracted from a Bitcoin
transaction history enabling the use of time series analysis approaches to identify changes
in the temporal behaviour. In particular, our work proposes a framework for the detection
of time locations in the time series of features extracted from Bitcoin transactions that may
signify the occurrence of events in which further attention should be paid to. This approach
could serve as a digital forensics tool for the analysis of Bitcoin transactions assisting in the
identification of possible causes that may have affected the transaction activity.

The proposed framework comprises three steps. At first, several features (namely
28 features) are extracted from the transaction history on a wallet basis aiming to capture as
much information as possible about these transactions and add further value to the analysis.
The values of the features are aggregated at specific time steps resulting in the depiction
of their dynamic evolution and the creation of time series. Then, the relevant time series
are grouped into clusters in order to perform feature selection and remove overlapping
information. Finally, the medoids of the formulated clusters constitute the input to the
change point analysis method so as to estimate time locations of statistically significant
changes in a multivariate time series; this analysis enables the identification of potential
relationships between time locations and event incidents that could have influenced the
changes observed in the transaction activity. Moreover, the use of a multivariate change
point detection (CPD) approach compared to a univariate one allows the exploitation of
possible correlations that may exist between the different features.

To the best of our knowledge, this is the first work that enables the use of change
point analysis approaches in temporal features extracted from Bitcoin transactions with
the goal to estimate the time instances where significant changes occur in the evolution
of the time series of interest. The proposed framework covers the whole pipeline from
feature extraction and selection, up to the final implementation of the multivariate CPD.
The applicability of the proposed framework is evaluated by analysing two notable Bitcoin
entities: Pirate@40, who was involved in a high-yield investment programme (HYIP)
scam, and the MintPal exchange platform that was hacked. Of course, it can be applied
to any other crypto entity, apart from Bitcoin. The analysis results are promising as the
effectiveness of the proposed framework is justified by succeeding in the detection of
structural breaks in the time series of interest of both entities at time locations which are
related to incidents that are worthy of further attention and may be linked to illicit actions.

The remainder of the paper is structured as follows: Section 2 presents the related
work with particular focus on time series analysis applied on cryptocurrency data, as well
as methods used for classifying addresses involved in crypto transactions as illicit. Section 3
details the proposed framework, while Section 4 showcases its applicability. In Section 5,
the results are discussed, and, finally, Section 6, summarises the main findings and provides
directions for future work.

2. Related Work

Time series analysis approaches have been widely applied on cryptocurrency data
aiming at the fitting of models and the provision of forecasts related to their prices. In Azari
(2019), the autoregressive integrated moving average (ARIMA) model has been applied
to predict the future value of Bitcoin by using the closing prices of a three-year period
starting from 1 September 2015. This work indicated that the proposed model is effective
over sub-periods in which the relevant time series has an unchanged trend, especially for
short-term predictions. The ARIMA forecast is compared with a long short-term memory
(LSTM) approach described in Fleischer et al. (2022); McNally et al. (2018). In these cases,
the LSTM model achieves a better accuracy compared to the ARIMA one, having the
tradeoff of longer execution time. Comparative studies about the use of time series analysis
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approaches in predicting crypto prices can be found in Ibrahim et al. (2021) and Tan and
Kashef (2019). An important feature that can be taken into consideration when modelling
the time series of crypto prices is the existence of time varying volatility. For this purpose,
generalized autoregressive conditional heteroskedasticity (GARCH) models have been
used to fit the relevant time series. For example, in Chu et al. (2017) twelve GARCH-
type models are fitted to seven cryptocurrencies (i.e., Bitcoin, Dash, Dogecoin, Litecoin,
Maidsafecoin, Monero, and Ripple) and the goodness of fit is assessed using information
criteria that utilise the likelihood function of the data based on the different models, such
as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

The detection of illicit activities from cryptocurrencies has been studied focusing
mainly on approaches where static features are extracted from the cryptocurrency transac-
tions, i.e., features that do not capture variation over time. Toyoda et al. (2017, 2019) studied
the identification of a type of fraudulent investment program called high-yield investment
programmes (HYIPs) by analysing Bitcoin transactions. They classified Bitcoin addresses
as HYIP-related using the XGBoost and random forest methods on a limited number of
static features, such as frequency of transactions, number of total transactions, and the
mean value of addresses per transaction. Moreover, they utilised an address clustering
methodology based on heuristics that allows for multiple addresses to be grouped based
on ownership. The same authors followed a similar approach in Toyoda et al. (2018a) to
classify Bitcoin addresses into multiple usage types (i.e., Exchange, Faucet, Gambling, HYIP,
Marketplace, Mixer, and Mining pool) formulating a multi-class problem compared to the
previous binary classification. In addition, Farrugia et al. (2020) studied the detection of
illicit addresses from Ethereum blockchain transactions. They extracted 42 static features
and used XGBoost to classify the addresses as normal or illicit. Finally, Lin et al. (2019)
extracted static features along with four new “transaction moments” in a multi-class classi-
fication problem. These moments summarise the transactions distribution into singular
values which represent the mean, variance, skewness, and kurtosis of the transactions.

Another approach for detecting illicit activities with static features is to use graph
analysis methodologies. For example, Ranshous et al. (2017) modelled Bitcoin transactions
as a hypergraph and identified graph motifs. Additionally, they extracted graph-based
statistical features (e.g., out-degree, total in-weight, etc.) that were used in their classifica-
tion model as exchange addresses that are possibly involved in money laundering/Bitcoin
mixing. Oliveira et al. (2021) proposed GuiltyWalker, a method that performs random
walks on a Bitcoin address network and extracts features based on the distance from illicit
nodes. Subsequently, they used the graph features along with other static ones to classify
the addresses as illicit or not. Yang et al. (2022) generated four-hop subgraphs for specific
time periods along with a set of features for each subgraph. Subsequently, they aggregated
the features (using e.g., average, max) and employed them in a classification task with the
labels: Gambling, Darknet Market, and Tumbler.

One avenue to enrich the Bitcoin transaction features is to consider how they change
over time allowing for the exploitation of dynamic features. By doing so, the temporal
component of the features is captured and the use of time series analysis approaches is
enabled. For example, Toyoda et al. (2018b) extracted four dynamic features on Bitcoin
transactions of a known HYIP operator and constructed the corresponding time series.
They used a sliding window of seven days with one day shift for the calculation of the
features. Then, an anomaly score based on principal component analysis was calculated per
time step based on the relevant dynamic features. Li et al. (2020) also extracted temporal
features in order to identify illicit addresses. They initially constructed some temporal
structures from time series and subsequently used an LSTM auto-encoder to codify them
into discriminative temporal features. They combined the temporal features with static
and topological ones to classify the addresses as illicit or not. Finally, Weber et al. (2019)
combined temporal, graph, and static features to classify addresses as illicit in a binary
classification problem. They divided the time horizon into multiple time steps and extracted
features for each step akin to forming time series.
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Our work also focuses on the exploitation of dynamic features related to crypto
transactions in order to gain further insights to the transaction history. Particularly, the
adopted approach presents a unified framework for revealing possible links between time
locations and event occurrences that may have triggered changes in transaction activity,
providing digital forensics practitioners a tool to identify possible trends and patterns that
could reveal illicit actions. Towards this direction, a multivariate change point detection
method is used to analyse the dynamic evolution of features of interest and identify changes
that may indicate the occurrence of events, where further attention should be paid to. Our
approach shares some similarities with the work of Toyoda et al. (2018b). In particular, both
approaches aim to detect behaviour irregularities by extracting temporal features from
cryptocurrency transactions. Moreover, the applicability of both methods is illustrated
using the Pirate@40 transactions. However, the two works exhibit also distinct differences.
More specifically, in our approach the list of extracted features is expanded (i.e., 28 features
compared to 4) in order to capture a more comprehensive overview of the transaction
activity. Due to the extended list of features, we add a feature selection step so as to
eliminate the overlapping information and reduce the computational cost of the analysis.
Moreover, we proceed with the analysis of the time series of interest via a change point
detection method instead of an anomaly score algorithm. Finally, we apply our approach
on the whole Pirate@40 dataset and not a part of it, compared to Toyoda et al. (2018b), as
well as on the MintPal transactions.

3. Materials and Methods

This section describes the steps of the proposed change point detection (CPD) frame-
work for the identification of statistically significant change points in the history of Bitcoin
transactions that may be linked to the occurrences of events which should be further
analysed (e.g., in the context of digital forensics). In particular, Section 3.1 describes the
methodology for the extraction of 28 time series features from the Bitcoin transaction history.
Then, Section 3.2 presents the approach that is followed for selecting features among the ex-
tracted ones based on the clustering of the relevant time series. Finally, Section 3.3 describes
the CPD algorithm that is used for the estimation of statistically significant changes in the
multivariate time series of interest that is formulated by the selected features. Figure 1
illustrates the overview of the proposed framework.

Figure 1. Overview of the proposed framework.

3.1. Feature Extraction

The proposed framework takes as input the wallet transactions of an entity of interest.
A wallet in this context is defined as a set of Bitcoin addresses that are associated with
a single entity. The wallet transactions can provide a better overview of the activity of
an entity compared to individual addresses, since the latter ones are typically used only
temporarily. In the context of this work, wallet transactions were used as extracted by the
website www.walletexplorer.com (accessed on 14 July 2023).

In order to simplify the wallet transactions, the amounts that originate and end up at
the same wallet are ignored; the same approach was also followed in Toyoda et al. (2018b).
For example, if addresses A, B, and D (see Figure 2) are known to belong to the same
wallet, then the amount 0.6 can be ignored since it ends up at the same wallet from which
it originated.

Typically, the majority of addresses are not directly associated with an entit; however,
there are some heuristic methods that can infer the addresses used by the same entity.

www.walletexplorer.com
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In particular, these heuristics are used in a process called address clustering, which starts
from a limited number of addresses and identifies addresses that are likely to belong to
same entity based on their interactions. For example, Figure 3 shows a transaction where
Address A is co-spending with Address B; this indicates that likely both addresses A and B
are controlled by the same entity. In the context of this work, no further address clustering
took place; for an overview of address clustering methods, please see the work of Zhang
et al. (2020) and He et al. (2022).

Figure 2. Example Bitcoin transaction with payback.

Figure 3. Example Bitcoin transaction with co-spending.

Once the addresses used by the same entity are aggregated into a wallet, the features
listed in Table 1 are extracted from the corresponding transactions. The values of each
feature are calculated at certain time steps (e.g., once per day) in order to generate the
respective time series that capture the evolution of the wallet activity over time. The
=received (spent) keyword defines the transactions where the wallet of interest is on the
receiving (spending) end of a transaction. The coinbase transactions are incentives/fees
rewarded to Bitcoin miners. The conversion from BTC to USD is made according to the
price of BTC in the specific period in order to account for the volatility of the BTC price.
Features 1, 2, 3, and 4 have been also used by Toyoda et al. (2018b) in the form of time
series. Weber et al. (2019) do not mention explicitly all the features that they used; thus, we
can only confirm the use of features 10 and 11 by them. To the best of our knowledge, the
rest of the features have only been used in static approaches (e.g., by Lin et al. 2019) and
not in the form of time series.
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Table 1. Features extracted from Bitcoin transactions per day.

No Feature Name Description

1 fTX The number of transactions per day
2 rreceived Ratio of received transactions to all transactions
3 rspent Ratio of spent transactions to all transactions
4 rcoinbase Ratio of coinbase transactions to all transactions
5 rreceived,spent Ratio of received transactions to spent transactions
6 ramount

received Ratio of received amount over all transacted amount
7 ramount

spent Ratio of spent amount over all transacted amount
8 ramount

coinbase Ratio of coinbase transactions amount over all transacted
amount

9 ramount
received,spent Ratio of received amount over the spent amount

10 mamount
spent_USD Mean amount of spent transactions in USD

11 mamount
received_USD Mean amount of received transactions in USD

12 mamount
coinbase_USD Mean amount of coinbase transactions in USD

13 mbalance_USD Mean balance of the wallet in USD
14 mbalance Mean balance of the wallet in BTC

15–21 fi_spent_USD Frequency of spent transactions where the amount (in USD)
is: 10i−1 < USD ≤ 10i for i ∈ {−1, 0, 1, 2, 3, 4, 5}

22–28 fi_received_USD Frequency of received transactions where the amount (in
USD) is: 10i−1 < USD ≤ 10i for i ∈ {−1, 0, 1, 2, 3, 4, 5}

3.2. Feature Selection

This section describes the second step in the proposed framework corresponding to
the selection of features among the extracted ones that will eventually contribute to the
construction of the input in the multivariate change point detection algorithm.

We propose to perform feature selection for the following reasons. First, given the list
of extracted features presented in Table 1, the proposed approach will need to generate
28 time series from the transactions’ history data to be used as the multivariate time series
input in the change point detection algorithm. In cases where this is further combined
with time series of significant length, then the computational cost and execution time of
the change point analysis will increase substantially; this may also hinder the real time
application of the proposed approach. Therefore, aiming to reducing such computational
costs, we aim to keep only the time series that provide further information to the gathered
intelligence and remove the ones that share similar characteristics, thus eliminating the
overlapping information.

Our approach towards feature selection is based on time series clustering. In other
words, the constructed time series based on the extracted features are organised into
homogeneous groups, and then, the centre of each group is used to contribute to the
formulation of the input for the multivariate change point analysis. In our case, the Partition
Around Medoids (PAM) clustering algorithm is used for the clustering of time series. This
method aims to find a set of representative objects, called medoids, and then assigns each
object of the data to the closest representative object; a detailed presentation of the algorithm
is provided in Kaufman and Rousseeuw (2009).

Since time series data represent the values of a feature that change over time, the
dynamic time warping (DTW) distance is used to identify the similarity between the different
time series. This distance allows to identify similarities between time-shifted time series
compared to other distances (e.g., Euclidean distance, Mikowski distance, etc.) which
are more suitable for static data. In particular, the DTW algorithm aims to compare two
time series and find the minimal path between them in terms of overall cost. Given two
time series X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yM), a warping path is a sequence
p = (p1, . . . , pl) with pl = (nl , ml) ∈ [1 : N]× [1 : M] for l ∈ [1 : L] satisfying the following
conditions (see for example Müller 2007):
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1. Boundary condition: p1 = (1, 1) & pl = (N, M);
2. Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nL & m1 ≤ m2 ≤ · · · ≤ mL;
3. Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}, l ∈ [1 : L− 1].

The total cost (in essence total distance) cp(X, Y) of a warping path p between X and Y
is defined as

cp(X, Y) =
L

∑
l=1

c(xnl , yml ).

Then, the DTW distance between X and Y is defined as the total cost of the optimal
warping path p∗ in terms of minimal total cost among all possible warping paths, i.e.,

DTW(X, Y) = cp∗(X, Y) = min{cp(X, Y)|p is a warping path}.

In order to find the optimal warping path, dynamic programming is used based on
the following formula:

DTW(i, j) = c(xi, yj) + min{DTW(i− 1, j− 1), DTW(i− 1, j), DTW(i, j− 1)}

where DTW(i, j) is the distance between (x1, x2, . . . , xi) and (y1, y2, . . . , yj) with the best
alignment, and c(xi, yj) is a distance between the two elements xi, yj. Also, it is assumed
that DTW(i, 0) = ∞, DTW(0, j) = ∞ and DTW(0, 0) = 0.

Regarding the estimation of the number of clusters, a validation approach is adopted
based on the compactness and the separation of the formulated groups corresponding to
different number of clusters. To implement such an internal clustering validation, several
clustering validity indices (CVIs) could be used namely the Dunn index (Dunn 1973), the
Silhouette index (Rousseeuw 1987), the Davies–Bouldin index (Davies and Bouldin 1979), etc.
Arbelaitz et al. (2013) performed an extensive comparative study of CVIs and illustrated
that there is no single CVI that clearly outperforms the others, although they observed that
the Silhouette index achieves the best results in many contexts. Given the above and since
there is no strong evidence in favour of a single CVI, we opted to use the Silhouette index,
which has also been used by Abbasimehr and Shabani (2021) and Puspita and Zulkarnain
(2020) in the context of time series clustering, hence selecting the number of clusters that
maximises its value.

3.3. Change Point Detection

The last step of the proposed framework corresponds to the implementation of a
multivariate change point analysis. Change point detection (CPD) methods are applied
to time series data aiming to estimate the time points of structural breaks in the evolution
of the time series; this can be performed for either univariate or multivariate time series.
Since various features are extracted in this work in the form of time series, the multivariate
approach is adopted aiming to exploit also the possible correlations that may exist among
the time series of interest.

In our case, the multivariate change point detection algorithm presented in Matteson
and James (2014) is used, which is also nonparametric and is based on the E-Divisive
method. Let Xn = {Xi : i = 1, 2, . . . , n} and Ym = {Yj : j = 1, 2, . . . , m} be independent
identical distributed samples from the distribution of X and Y ∈ Rd, respectively, such
that E|X|α, E|Y|α < ∞ for some α ∈ (0, 2). An empirical divergence measure is defined
as follows:
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ε̂(Xn, Ym; a) =
2

mn

n

∑
i=1

m

∑
j=1
|Xi −Yj|a

−
(

n
2

)−1

∑
1≤i<k≤n

|Xi − Xk|a

−
(

m
2

)−1

∑
1≤j<k≤m

|Yj −Yk|a,

a ∈ (0, 2). For the detection of a single change point, a scaled sample measure of the above
divergence measure is defined as

Q̂(Xn, Ym; a) =
mn

m + n
ε̂(Xn, Ym; a), a ∈ (0, 2)

Let Z1, Z2, . . . , ZT ∈ Rd be an independent sequence of observations, and let 1 ≤ τ <
κ ≤ T be constants, where T denotes the length of the time series of observations. The sets
Xτ = {Z1, Z2, . . . , Zτ} and Yτ(κ) = {Zτ+1, Zτ+2, . . . , Zκ} are defined, and a change point
location τ̂ is estimated as

(τ̂, κ̂) = argmax(τ,κ)Q̂(Xτ , Yτ(κ); a)

To estimate multiple change points, the above technique is iteratively applied. Suppose
that k− 1 change points have been estimated at time locations 0 < τ̂1 < · · · < τ̂k−1 < T.
These partition the observations into k clusters Ĉ1, . . . , Ĉk, such that Ĉi = {Zτ̂i−1+1, . . . , Zτ̂i },
in which τ̂0 = 0 and τ̂k = T. Given these clusters, the procedure for finding a single change
point is applied to the observations within each of the k clusters. The corresponding test
statistic for the kth estimated change point is given by the relation q̂k = Q̂(Xτ̂k , Yτ̂k (κ̂k); a),
where τ̂k = τ̂(i) denotes the kth estimated change point located within cluster Ĉi and
κ̂k = κ̂(i) the corresponding constant. Moreover, a permutation test is used to determine
the statistical significance of each change point (p-value) under the null hypothesis of no
additional change points (R random permutations are performed). First, the observations
within each cluster are permuted to create a new sequence of length T. The estimation
process is then implemented again for the detection of change points in the permuted
observations. This process is repeated, and after the lth permutation of the observations,
the test statistic q̂(l)k is recorded. An approximate p-value of the kth estimated change point
is defined as

#{l : q̂(l)k ≥ q̂k}/(R + 1)

An overview of the process that is followed for the change point analysis of a time
series of interest is illustrated in Figure 4. Once a change point location is estimated,
the time series is partitioned into two clusters of observations. Then, the procedure for
finding change points is iterated in each one of the formulated clusters, resulting in further
segmentation of the time series. The algorithm terminates when no further statistically
significant change points are identified. The statistical significance of a change point is
determined via a permutation test, as described above.

Overall, the proposed change point analysis method provides a tool for retrospectively
detecting statistically significant changes in a multivariate time series. When considering
historic data that are related to Bitcoin transaction history, the time locations of the esti-
mated change points could be linked to the occurrence of events that may have triggered
the changes, and could be further investigated aiming to identify potential illicit activ-
ities. Finally, the application of the CPD method into multivariate data also allows the
exploitation of possible correlations that may exist between the different features that will
formulate the multivariate input to the CPD algorithm capturing more information about
the changes.
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Figure 4. Overview of the CPD algorithm where the time series is segmented into clusters of
observations after the detection of statistically significant change points (CPs).

4. Results

This section presents the results derived by the application of the proposed framework
to two different datasets containing Bitcoin transactions that were linked to illicit activities:
Pirate@40, who was involved in a high-yield investment programme (HYIP) scam, and the
MintPal exchange platform that was hacked.

4.1. Experimental Setup

To showcase and evaluate the applicability of the proposed change point detection
framework in identifying potential illicit addresses in Bitcoin transactions, two high profile
Bitcoin entities, which involved illicit activities and their timeline was covered in news
outlets, social media, and Web forums have been selected. The effectiveness of the proposed
method is validated by its capability to identify statistically significant changes in the
evolution of the selected time series of features at time points which can be linked to
occurrences of events that may indicate the existence of illicit actions; this validation
method has been followed due to the absence of ground truth about the time locations of
the statistically significant changes in the time series of interest. Within a different context,
a similar approach is included, for example, in Gerlach et al. (2019) regarding a bubble
analysis of the Bitcoin to USD price dynamics from January 2012 to February 2018. Also,
Theodosiadou et al. (2021) adopts analogous approach in the context of detecting change
points in terrorism-related online content. Next, we describe the two Bitcoin entities that
have been analysed.

The first entity was a user with the nickname Pirate@403; this entity was also analysed
by Toyoda et al. (2018b). Pirate@40 orchestrated a kind of a Ponzi scheme—a high-yield
investing programme (HYIP) scheme. Such schemes offer absurdly high interest rates
in order to lure new investors, while they use new investments to pay out earlier ones.
Pirate@40 started his scheme in November 2011 gradually offering up to 7% interest per
week. He mainly operated in the www.BitcoinTalk.org (accessed on 14 July 2023) forum
where he advertised the high interest rates that were promised to reach up to 11%. He
progressively amassed investors until the beginning of August 2012 when he announced a
reduction in the interest rate to 3.9%. Later in the same month he declared default, and as a
result, he was charged for the misappropriation of about 146,000 Bitcoin out of the total
764,000 that were raised over the whole scheme’s life cycle4. The total amount corresponded
to approximately USD 4,500,000 based on the average Bitcoin price at that period.

The second entity for evaluation is the MintPal5 cryptocurrency exchange platform;
to the best of our knowledge, this entity has not been previously analysed. MintPal pro-
vided exchange services between cryptocurrencies and fiat money. Moreover, it provided
cryptocurrency wallet services for its customers that were entrusting the platform with
their crypto assets. MintPal was founded in February 2014 and gradually became a popular
exchange platform that traded on multiple crypto assets (including Bitcoin). On 13 July

www.BitcoinTalk.org
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2014, the platform was hacked and 8,000,000 Vericoin (valued USD 2,000,000) were stolen.
Notably, the Vericoin community decided to rollback the blockchain to a point before the
hack, effectively annulling the stolen Vericoins. Despite that, a few months after the hack,
the Mintpal platform was sold to the digital currency service provider Moolah Ltd. (Lon-
don, UK). The expressed intent was to use MintPal as the major altcoin exchange platform
of Moolah. The merging of the two companies was plagued with technical difficulties, and
finally, on October 2014, more than 3700 Bitcoins went missing. Unlike the first incident, in
this case the stolen amount was not able to be restored, resulting in losses equivalent to USD
1,500,000 at that period. Contrary to the first hacking incident, the events on October 2014
were attributed to Moolah’s CEO, who participated in the merging of the two companies.

The datasets of the two entities were retrieved from the Wallet Explorer website6,
which contains lists of Bitcoin transactions for specific entities. The transactions are owner-
based, meaning that multiple Bitcoin addresses are combined into a single entity (wallet).
This is because one entity typically uses multiple Bitcoin addresses throughout its lifetime.
For example, Figure 5 shows five transactions of the MintPal entity as provided by Wallet
Explorer, where the columns represent:

1. The timestamp of the transaction;
2. The ID of the spending entity;
3. The transacted amount;
4. The ID of the receiving entity;
5. The progressive balance;
6. The blockchain transaction ID.

The receiving/spending IDs are attributed by the Wallet Explorer website and they do
not hold a particular importance other than to distinguish between entities. The balance
changes progressively according to the transaction, starting from the bottom row and
moving up. For example, the last row indicates that the MintPal entity received 0.0495
Bitcoin from the entity with ID 0152a50424 and the row above indicates that the entity
MintPal sent 0.538 to 4a4be7bf40, and 0.001 was used up as a fee.

Figure 5. Example of owner-based transactions from the Wallet Explorer.

In what follows, the proposed framework is applied to the two abovementioned
Bitcoin entities that were involved in illicit activities. The analysis includes the three steps
described in detail in Section 3: (a) feature extraction, where 28 features are extracted from
the transaction history and their values are aggregated on a daily basis resulting in the
creation of 28 time series; (b) feature selection, where the relevant time series are grouped
into clusters; and (c) change point detection, where the multivariate time series created by
the medoids of the formulated clusters is analysed aiming to identify statistically significant
changes in it. For the implementation of the change point detection algorithm presented in
Section 3.3, the “ecp” R package has been used.
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4.2. Pirate@40 HYIP Scheme

In this section the applicability of the proposed framework is illustrated and evaluated
using the Pirate@40 dataset and the relevant results are presented.

Feature extraction. The features mentioned in Table 1 are extracted from the Pirate@40
dataset per day, resulting in the construction of 28 time series with length T = 408 (days)
each, covering the period 22 from June 2011 until 26 August 2012.

Feature selection. To categorise the extracted features into homogeneous clusters so as to
use the medoid time series of each class as input to the CPD algorithm, the PAM clustering
algorithm is applied to the constructed time series using the DTW distance. In order to
estimate the optimal number of clusters, we use the Silhouette index for the clustering
validation, selecting the number of clusters that maximises its value (see Section 3.2); the
results are presented in Table 2 for different numbers of clusters.

Table 2. Calculation of the Silhouette index for different number of clusters in the Pirate@40 case. In
bold the number of clusters that corresponds to the maximum value of the index.

No. of Clusters Silhouette Index

2 0.1683
3 0.1429
4 0.1568
5 0.1820
6 0.1303
7 0.0401
8 0.0985
9 0.0411
10 0.0887
11 −0.0525
12 0.0529

Based on Table 2, the maximum value of the Silhouette index related to the Pirate@40
entity is achieved with the use of five clusters. Therefore, we proceed with the clustering of
the extracted time series features into five groups. The formulated clusters, as well as, the
medoid time series of each one of them, are presented in Table 3, while Figure 6 depicts
graphically the evolution of the medoid time series.

Table 3. Clusters and the relevant medoid time series in the Pirate@40 case.

Cluster Features in Cluster Medoid Feature Label of Medoid

1st 4, 10, 11, 13, 14, 17, 21, 23, 27, 28 11 Mean amount of received transactions (USD)
2nd 12, 18 12 Mean amount of coinbase transactions (USD)
3rd 3, 6, 7 7 Ratio of spent amount
4th 2, 8, 9, 15, 16, 22 8 Ratio of coinbase transactions amount
5th 1, 5, 19, 20, 24, 25, 26 24 f1_received_USD

Change point analysis. Using the medoids of each of the five clusters, we result in creating
a five-dimensional time series which constitutes the input to the CPD algorithm presented
in Section 3.3. The results of the change point analysis in the multidimensional time series
are presented in Table 4 and are depicted graphically in Figure 7.
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Figure 6. Medoid time series of the clusters related to the Pirate@40 case: (a) 1st cluster, (b) 2nd cluster;
(c) 3rd cluster, (d) 4th cluster, and (e) 5th cluster.

Table 4. Estimated change points for the five-dimensional time series along with the corresponding
significance values at 5% significance level.

# Time Date p-Value

1 106 5 November 2011 0.002
2 161 30 December 2011 0.002
3 265 12 April 2012 0.002
4 302 19 May 2012 0.006
5 365 21 July 2012 0.030

Some observations can be drawn by taking into account the time locations of the
estimated change points and incidents (e.g., forum announcements) that occurred during
the transaction period related to the Pirate@40 wallet. The first estimated change point
at time location t = 106 (5 November 2011) signifies a period where transaction activity
mainly started to occur, without intensity, though this characteristic is more obvious when
considering the evolution of the time series related to the frequency of received transactions,
where the range of the USD amount is greater than 10−1 and less than or equal to 10. It is
noted that the time series of the number of transactions per day evolves similarly, since
they both belong to the fifth cluster. This change in trend may be partially related to a major
announcement that took place at the beginning of November 2011 based on the related
topic in the Bitcointalk forum where it was announced by the Pirate@40 user that the Bitcoin
Savings & Trust will be closed down7.
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Figure 7. Time locations (vertical lines) of the estimated change points in the five-dimensional
time series.

The period between the second estimated change point at time location t = 161
(30 December 2011) and the third one at t = 265 (12 April 2012) appears to have an in-
creasing trend, especially when considering the time series related to the ratio out amount
and the frequency of the received transactions where the values of the USD amount lie
between 10−1 and 10. Subsequently, it can be argued that the estimated change point at
t = 161 signifies an upward change related to the transactions activity; this may be linked to
the opening of the website of Pirate@40’s HYIP that occurred in December 2011, according to
the related topic in the Bitcointalk forum8, and may have triggered such an intense activity.

Regarding the period between t = 265 (12 April 2012) and the fourth estimated change
point at t = 302 (19 May 2012), it can be argued that a more intense activity in transactions
is identified compared to the previous period. In this case, time location t = 265 signals the
initialisation of a more intense upward trend in the transactions activity which could be
partially justified by the fact that on 10 April 2012 Pirate@40 changed their scheme name9;
this may have contributed to the continuation of the upward trend in a more intense way.

Commenting on the period between t = 302 (19 May 2012) and the fifth estimated
change point at t = 365 (21 July 2012), it can be argued that the related time series appear
to have a stable trend at a high level; this means that the fourth estimated change point
at t = 302 indicates the initialisation of a period with stable trend in transactions activity.
Finally, the last period starting at t = 365 (21 July 2012) until the wallet was defunct
(26 August 2012), indicates the existence of a decreasing trend related to the medoid time
series of the fifth cluster, and an increasing one in the remaining medoids. This may be
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partially linked to the fact that during July 2012 Pirate@40 changed its interest rate down
from 7% to 5%10.

Overall, based on the findings derived from the application of the proposed method
to the Pirate@40 case, it can be concluded that the estimated change points in the time
series of interest partially align with time instances of events that may have impacted its
transaction activity.

4.3. The MintPal Exchange Platform

In this section, the applicability of the proposed framework is illustrated using the
MintPal dataset.

Feature extraction. The features mentioned in Table 1 are extracted from MintPal dataset
per day, resulting in the construction of 28 time series with length T = 271 (days) each,
spanning the period from 2 February 2014 until 31 October 2014.

Feature selection. Similarly to the Pirate@40 case, we categorise the extracted features into
clusters using the PAM clustering method with the DTW distance, and the optimal number
of clusters is selected using the Silhouette index; the values of this index for different number
of clusters are presented in Table 5.

Table 5. Calculation of the Silhouette index for different number of clusters in the MintPal case. In
bold the number of clusters that corresponds to the maximum value of the index.

No. of Clusters Silhouette Index

2 0.3056
3 0.1679
4 0.1987
5 0.1161
6 0.1125
7 0.1286
8 0.1082
9 0.0016
10 0.1100
11 0.0584
12 0.1120

The maximum value of the Silhouette index is achieved with the use of two clusters,
and therefore, we proceed with the clustering of the extracted time series features into two
groups. Table 6 presents the clusters and the medoid time series for each one of them, while
Figure 8 showcases the evolution of the medoids over time.

Table 6. Clusters and the relevant medoid time series in the Mintpal case.

Cluster Features in Cluster Medoid Feature Label of Medoid

1st 1, 3, 11, 13, 14, 15, 16, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28

24 f1_received_USD

2nd 2, 4, 5, 6, 7, 8, 9, 10, 12, 17 10 Mean amount of spent transactions (USD)

Change point analysis. Using the medoids of each of the two clusters, we result in creating
a two-dimensional time series which constitutes the input of the CPD algorithm presented
in Section 3.3. The results of the change point analysis in the multidimensional time series
are presented in Table 7 and are depicted graphically in Figure 9.
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Table 7. Estimated change points for the two-dimensional time series along with the corresponding
significance values at 5% significance level.

# Time Date p-Value

1 35 9 March 2014 0.002
2 70 13 April 2014 0.002
3 111 24 May 2014 0.002
4 141 23 June 2014 0.002
5 171 23 July 2014 0.002
6 209 30 August 2014 0.006
7 242 2 October 2014 0.022

Figure 8. Medoid time series of the clusters related to the MintPal case: (a) 1st cluster and
(b) 2nd cluster.

Similarly to the Pirate@40 case, some observations could be drawn regarding the
MintPal crypto exchange platform. The period between the first estimated change point
at t = 35 (9 March 2014) and the second one at t = 70 (13 April 2014) depicts a more
intense upward trend related to the transaction activity compared to the previous one; this
characteristic is more obvious especially when considering the time series of the frequency
of the received transactions where the values of the USD amount are greater than 10−1

and less than or equal to 10. It is also mentioned that the time series of the number of
transactions per day evolves similarly, since both features belong to the first cluster. In
other words, time location t = 35 initiates a period with a more intense upward trend in the
extracted features. This could be attributed partially to two facts: (a) MintPal was founded
in February 2014 (See Note 5 above) and consequently there was a gradual increase in
transactions since then, and (b) a new cryptocurrency was added in MintPal in early March
201411 that may have boosted the transaction activity.
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Figure 9. Time locations (vertical lines) of the estimated change points in the two-dimensional
time series.

Regarding the period between time locations t = 70 (13 April 2014) and t = 111
(24 May 2014), it could be argued that a stable trend at high level is depicted, especially in
the medoid time series of the second cluster. This means that the high transaction activity
continues from the previous period and stabilises. The high engagement related to a tweet
commenting on the addition of the BlackCoin in MintPal constitutes an indication of this
high interest (See Note 11 above). In the remaining periods formulated by the estimated
change points, either a decreasing trend is depicted related to the medoid time series of the
first cluster and an increasing one in the medoid of the second cluster, respectively (e.g.,
during the period between t = 111 (24 May 2014) and t = 141 (23 June 2014), or a stable one
at a low level is depicted in both cases (e.g., during the period between t = 171 (23 July 2014)
and t = 209 (30 August 2014). These identified trends may be partially related to a series
of events that may have triggered the change in the transaction activity in MintPal, like
the attack it faced on 13 July 201412, the fact that it was purchased by the digital currency
services provider Moopay late July 201413, and the technical issues that were raised due to
the relaunch of MintPal exchange early October 201414.

The findings obtained from applying the proposed change point detection framework
in the MintPal dataset are similar with the results of the first one in the Pirate@40 entity.
These similarities suggest that the framework could successfully identify links between
time instances and events that may influence the transaction activity.

5. Discussion

This paper proposed a method for the analysis of dynamic features formulated as time
series data that are extracted from Bitcoin transactions. The core of the analysis is based on
the implementation of change point detection in the relevant time series aiming to identify
the time locations of statistically significant changes in their temporal evolution. The
motivation and rationale behind this approach lies on the fact that the estimated locations
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may be correlated to the occurrence of events that could affect the transaction activity, and
therefore may need to be further investigated.

Taking into consideration the results derived from the application of the proposed
framework in real cases, as presented in Section 4, it could be deduced that the estimated
change points coincide partially with the time locations of incidents that may influence
the transaction activity. Therefore, links are identified between time instances and event
occurrences, indicating that the proposed approach could serve as a tool in digital forensics
aiming to identify trends and patterns in transaction activity that could lead to the exposure
of potential illicit actions after the more thorough investigation of the relevant events. For
example, the proposed framework could be applied in the analysis of historical data of a
wallet that is considered to be an HYIP scam. At a specific time instance, a change point
is estimated. Upon further investigation, it is revealed that this point overlaps with the
time that the scammer initiated the halt of the outgoing payments; this event impacted the
transaction activity and it was eventually linked to the existence of an illicit activity. Of
course, patterns of illicit behaviour in crypto transactions are continuously evolving and
become more complex, thus introducing further difficulties in the development of digital
forensics technologies that could identify them.

It should be noted though that the proposed framework aims at estimating time
locations in the transaction activity where the statistical properties of the features change
over time. In other words, it provides alerts at time instances where different behaviour
begins to be observed (from a statistical point of view) compared to the evolution in the
past. Then, these alerts can trigger further investigation in terms of digital forensics to
determine whether the estimated time instances coincide with events that affected the
transaction activity and may imply illicit behaviour. Overall, the time locations of the
estimated change points do not necessarily correspond to illicit activity, as they could also
correspond to changes in the behaviour of (privacy-preserving) non-illicit activities, but
they can be indications of illicit actions, particularly in specific contexts.

The proposed change point detection framework introduces the retrospective analysis
of Bitcoin transactions when considering historic data. The offline analysis can be utilised
as a tool to learn patterns and trends in transaction activity that may suggest illicit activities.
However, the framework could also be implemented in real time using online change point
analysis techniques in the extracted features. This will enable the online monitoring of the
transaction activity of interest providing alerts when changes are identified in real time;
these alerts will prompt further investigation that could potentially result in the exposure
of the onset of possible illicit activities.

6. Conclusions

This work proposed a unified change point detection framework for the estimation of
statistically significant changes in time series features extracted from Bitcoin transaction
history that may be related to the occurrence of events that should be further investigated.
The framework covers the whole pipeline from the extraction of the features of interest
in a time series form and the selection of features among the extracted ones based on
a clustering approach until the application of the change point analysis to the medoid
time series of the constructed clusters aiming to detect the time locations of significant
changes. The proposed framework was applied to two notable Bitcoin entities to showcase
its appropriateness in detecting such structural breaks.

Overall, based on the application results, it can be concluded that the proposed
framework could contribute to the revealing of potential links between time locations and
occurrences of events in the crypto transaction history that may have caused the statistically
significant changes in the evolution of transaction activity; this could serve as a digital
forensics tool to further investigate the relevant event occurrences and identify possible
trends and patterns that can be related to illicit actions.

Regarding future work, a possible direction in the feature extraction part is to enrich
the list of extracted features aiming to capture an even more comprehensive picture of the
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overall transaction activity (e.g., include features that reflect the evolution of the standard
deviation of the metrics of interest). Additionally, online change point techniques could also
be exploited in time series containing features from crypto transactions, enabling real-time
inference regarding the identification of potential illicit addresses/activities.
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