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ABSTRACT Anomaly detection is a challenging problem in various application domains of Artificial
Intelligence, such as in video surveillance, the Internet of Things, and notably, precision agriculture. The
effectiveness of anomaly detection in each field is intricately linked to the domain-specific data, adhering,
at the same time, to the core objective of detecting outliers. In the precision agriculture domain, anomalies
range from plant diseases in image data to fluctuating environmental conditions in time-series datasets.
This review provides a detailed examination of deep learning-based anomaly detection methods within
precision agriculture, adopting the PRISMA methodology for a structured and comprehensive analysis.
We employ a novel taxonomy categorizing recent literature by agricultural application, anomaly relevance,
data modality, deep learning architecture, supervision level, and dataset usage. Our findings highlight a
predominant reliance on visual data and uncover a potential alignment between methods originally devised
for classification or detection and the anomaly detection challenge. The review also signals a pressing
need for large-scale datasets to address precision agriculture challenges effectively. By mapping the current
landscape and suggesting directions for future research, our work aims to facilitate advancements in anomaly
detection techniques, enabling enhanced decision-making and operational efficiency in precision agriculture.

INDEX TERMS Anomaly detection, deep learning, literature review, precision agriculture, taxonomy.

I. INTRODUCTION
The global population’s significant increase in the last
decades, with projections surpassing nine billion within
the next three decades, underscores an urgent need for
enhanced food production strategies [1]. To meet this
demand, it is imperative not just to expand agricultural
lands, but also to optimize crop yields through technological
innovation. Precision Agriculture (PA) [2] is a management
strategy, which integrates the Internet of Things (IoT) and
Artificial Intelligence (AI), and stands at the forefront of
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this revolution, to offer a sustainable pathway to increase
efficiency and precision in farming practices [3], [4]. As an
example, using real-time input from Unmanned Ground
Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs) and
other sensors, PA facilitates continuous monitoring and
optimal management of soil, water, and air conditions,
marking a significant leap from traditional methods [5], [6].
PA techniques can be applied in the whole cycle of farming,
including the observation, diagnosis, decision and action,
in order, for instance, to reduce the quantity of herbicides
while effectively removing weeds, as well as to reduce main
crop losses by keeping the farming cost low and decreasing
environmental impact [7].
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Among AI technologies, Deep Learning (DL) represents
a transformative approach, particularly in analyzing complex
data such as satellite and aerial imagery for crop monitoring,
disease detection, and environmental assessment. Unlike
traditional Machine Learning (ML) techniques, DL can
handle vast amounts of unstructured data, enabling more
accurate and comprehensive analyses [8], [9]. This capability
is crucial for PA, where the early detection of anomalies
such as plant diseases or adverse environmental conditions
can significantly mitigate risks and enhance crop yield [10].
Furthermore, DL applications extend to predicting weather
patterns, optimizing irrigation schedules, and estimating crop
yield, all of which contribute to reducing operational costs
and environmental impact [11], [12], [13]. The following
paragraphs illustrate recent studies that aim to categorize
PA-related DL methods from different aspects.

In [10], the authors present a detailed categorization
of 40 DL-based methods related to agriculture and food
production. They define and classify the methods into
16 categories of agriculture areas while highlighting their
performance and DL-related features. The same authors,
in [14], summarize and analyze 27 methods related to
agriculture based on Convolutional Neural Network (CNN)
architectures, focusing on technical details of the employed
models, their reported performance and data sources used.
In [15], the authors present a short review of DL methods
in the agriculture and food production domain by illustrating
their performance compared to traditional AI models, while
in [1], the authors carry out a short review of DL-based
methods related to weed detection in five types of crops.
In [16], the authors present a survey of DL-based techniques
by categorizing the methods into 14 categories related
to agriculture and reviewing the data employed, the DL
architecture design, and the performance.

In [17], the authors propose a classification of DL methods
based on the type of dense scenes encountered in agricultural
contexts. Their classification into quantity-dense and inner-
dense scenes provides a framework for assessing the suit-
ability and effectiveness of different DL approaches in PA.
Let us note that quantity-dense scenes refer to environments
where the primary focus is on countable objects, such as
fruits or vegetables, whereas inner-dense scenes describe
environments characterized by the holistic view of plants,
such as fields of wheat or canopy cover. In [18], recent ML
and DL approaches related to plant phenotyping techniques
for cropmonitoring are reviewed. In [19], a statistical analysis
of scientific studies -related to agriculture- published during
the last two decades is presented. ML and DL techniques are
analyzed and counted according to the number of citations
gained, published country, applied framework, and category
of the input data. In [7], the authors present a bibliographic
analysis of 120 published scientific studies in the field
of agriculture by categorizing them into nine domains of
agriculture. In [13], the authors filter recent DL papers and
review 32 of them by classifying them into three categories:

plant, animal, and others; moreover, they report the technical
details about the DL architecture used for each one.

In [20], the authors review robotic systems developed
based on ML and DL algorithms to address typical
agricultural operations, namely harvesting and cropping.
In [21], the authors illustrate a detailed review of DL-based
methods for yield prediction and estimation at an early
stage. In [12], the authors survey the DL methods related
to the crop yield prediction problem and illustrate their
objectives, techniques used, and applied crop types. In [22],
the authors review the recent advancements, challenges and
prospects of DL methods applied in controlled environments,
i.e. greenhouses and plant factories. In [23], the authors
analyze 595 documents related to few-shot learning, with
27% of them found to be applied in the agriculture domain.
Few-shot learning, recognized for its ability to learn from
limited data, represents an evolution beyond traditional DL
approaches, offering promise in scenarios where collecting
extensive labeled datasets is impractical. Despite its distinct
methodology, few-shot learning often relies on DL models as
foundational backbones, benefiting from their robust feature
extraction capabilities to perform with minimal examples.

In [24], the authors review theDL-basedmethods proposed
over five years in the agriculture domain by characterizing
the problem addressed, the dataset employed, the DL model
used, the framework deployed, and the data augmentation
technique applied. Finally, in [25], the authors develop a
DL-based system to detect and classify tomato plant diseases
from leaves observation related to the tomato diseases
and analyse their performance across ten deep learning
architectures.

The aforementioned research reviews are related to
DL-based techniques proposed in PA and cover the domain
from various aspects, i.e., through comparison of DL
methods’ performance, agricultural practice categorization,
and classification of DL architectures used. However, none
of them is designed to perform a categorization of the
methods taking into account their primary objectives and their
relevance to the anomaly detection problem, which typically
aims to the separation of data samples into positive and
negative categories. According to [26], [27], [28], [29], [30],
and [31], an anomaly is defined as a data point or event
that deviates from the data considered normal, an outlier,
an abnormality, something unusual, irregular, inconsistent,
unexpected, erroneous, or faulty, generally everything that
generates nonconforming patterns. The methods and algo-
rithms proposed to effectively observe, detect, extract, and
identify these data points or events comprise the main
objective of the anomaly detection domain. Such methods
and algorithms are characterized by using unlabeled or few
-labeled with anomalies- data.

In this work, we characterize and categorize the currently
applied DL-based methods for anomaly detection in the field
of PA by proposing a new taxonomy. We provide a detailed
discussion and report the characteristics and datasets of all
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examined methods. Our contributions are summarized as
follows:

(a) A Novel Taxonomy for PA: We introduce a novel
taxonomy that categorizes DL methods based on their
relevance to anomaly detection in PA. This taxonomy
is unique in its consideration of both the nature of
anomalies (e.g., plant diseases, environmental stresses,
pests and weeds appearance, crop yield deviations) and
the data types (e.g., satellite imagery, sensor data) used
in their identification. Hence, we provide a framework
that directly links the objectives of DL methods to their
applicability in detecting agricultural anomalies.

(b) Method Objective Categorization: Our taxonomy
classifies DL methods into specific categories, namely
feature extraction, classification (binary, multi-class,
pixel-wise), region proposal (object detection), instance
segmentation, regression, and reward predictor depend-
ing on their final objective. We provide examples illus-
trating how these objectives support specific anomaly
detection tasks in PA, like pixel-wise classification for
stress identification in crops or instance segmentation
for precise disease detection.

(c) Characterization Across the Supervision Spectrum:
Recognizing the varied availability of labeled data in
PA, our taxonomy includes methods spanning the entire
supervision spectrum: unsupervised, semi-supervised,
supervised, and reinforcement learning. This catego-
rization underscores the potential of unsupervised and
semi-supervised methods in scenarios where anomalies
are rare or ambiguous, highlighting their importance for
effective anomaly detection in PA.

(d) Comprehensive Discussion on Categorization: We
offer an extensive discussion on the proposed catego-
rization, addressing the effectiveness and challenges of
applying these DL approaches to PA. This includes con-
siderations of data availability, computational demands,
and the integration of multi-modal data, providing a crit-
ical analysis of current methodologies and suggesting
pathways for future research.

(e) Evaluation of Datasets and Methodologies: In
addressing the critical role of datasets for training and
evaluating DL models, we present an analysis of the
datasets utilized by categorized methods, facilitating
considerations of their diversity, quality, and relevance
to different anomaly detection tasks. Moreover, our
review highlights the approaches to cross-domain evalu-
ation within the taxonomy, emphasizing its significance
in assessing the robustness and generalizability of these
methods across various PA scenarios.

The remainder of the paper is organized as follows:
Section II specifies the methodology adopted for collect-
ing the related literature and datasets. It includes our
systematic approach to data collection, the criteria for
inclusion and exclusion, and the process for categorizing
content. Additionally, we articulate the research questions

addressed through our analysis, laying the groundwork
for a thorough investigation of the domain. Section III
provides a foundational overview of DL concepts critical to
understanding the subsequent analysis. Section IV introduces
and explicates the proposed novel taxonomy for categorizing
DL-based anomaly detection methods in PA. We detail each
category within the taxonomy and discuss the rationale
behind their creation, followed by an in-depth examination
of the DL methods assigned to each category, highlighting
their objectives, methodologies, and applications. Section V
proceeds in a detailed discussion of the findings from
our taxonomy linked to the corresponding subsections of
section IV, including a statistical analysis of the methods
categorized and the insights gained from this classification
including computational resources demands of each DL
approach. We explore emerging trends, identify gaps in
the current research landscape, and discuss the implications
of our findings for future work in the field. Finally, the
conclusions are presented in section VI.

II. METHODOLOGY
Themethodology followed to identify, screen, and include the
methods reported in this survey is aligned with the guidelines
reported by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) methodology [32].
Specifically, PRISMA methodology addresses 27 relevant
items from a predefined checklist and the actions are
illustrated in the flowchart focusing on new systematic
reviews, which included searches of databases and registers
only. The actions for discovering the studies that will be
reported and reviewed in this survey are based on the three
steps: identification II-A, screening II-B, and inclusion II-C,
as depicted in Fig. 1 for the collection, validation, and
selection of the respective studies.

A. IDENTIFICATION-RECORDS COLLECTION
The step of ‘‘Identification’’ aims to collect the content for
this survey by defining the databases and formulating the
queries applied to the corresponding search engines. Thus,
a combination of keywords and operators is required to
formulate the queries to acquire the content that will be
analyzed in this systematic review. The formulated queries
were executed in two scientific databases: SCOPUS andWeb
of Science (WoS), as depicted in the list below:

• Scopus: TITLE((agriculture AND ‘‘deep learning’’) OR
(agriculture AND ‘‘artificial intelligence’’)) AND ABS
((agriculture AND ‘‘deep learning’’) OR (agriculture
AND ‘‘artificial intelligence’’)) AND PUBYEAR >

2017 AND PUBYEAR < 2024 AND (LIMIT-TO (LAN-
GUAGE, ‘‘English’’)) AND (LIMIT-TO (DOCTYPE,
‘‘ar’’) OR LIMIT-TO (DOCTYPE, ‘‘cp’’))

• Web of Science: (((((TI= (agriculture) AND TI= (deep
learning)) OR (TI = (agriculture) AND TI = (artificial
intelligence))) AND ((AB = (agriculture) AND AB =

(deep learning)) OR (AB = (agriculture) AND AB =
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FIGURE 1. PRISMA 2020 flow diagram for identification of studies via databases and registers.

(artificial intelligence)))) ANDPY= (2018-2023)) AND
DT = (Article OR Proceedings Paper)) AND LA =

(English)
The queries target to retrieve manuscripts in English and

published only in conference proceedings or journals. The
relevant publications must contain the words ‘‘agriculture’’
and ‘‘deep learning’’ or ‘‘agriculture’’, and ‘‘artificial intel-
ligence’’ in their abstract and its title, while the publication
time should be between 2018-23. We emphasized the use of
generic keywords and logical operators in query formulation,
an extended publication timeframe, and the inclusion of

two databases to mitigate potential limitations and biases,
in order to ensure greater transparency in the systematic
review. In Fig. 1, are depicted 266 records have initially been
identified from the two databases (last access: July 20, 2024),
out of which 64 were duplicates and hence, were excluded,
resulting in 202 records for the next step.

Fig. 2 illustrates the distribution of these collected
publications over the examined years (after removing the
duplicates). It is clearly illustrated that there is an increased
interest from researchers in publishing DL-based scientific
works related to precision agriculture year to year. This is also
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FIGURE 2. Number of published scientific works in SCOPUS and web of
science from 2018 to 2023.

depicted in 2023 with more than 76 scientific works related to
DL-based precision agriculture from a total of 202 published
in the last six years.

B. SCREENING-RECORDS MASKING
In this step, the objective is to mask the data records that are
not directly relevant to this systematic review by reporting the
reasons and the eligibility criteria, firstly based on their title
and abstract and then by reading their full texts. As depicted
in Fig. 1, from 202 records, 19 are excluded because they
are related to systematic reviews and surveys. These records
contain the keywords ‘‘review’’ and/or ‘‘survey’’ in their
titles, while another 73 records are excluded as reviews,
surveys, reports, and bibliometric and scientometric analyses
during the screening step. Moreover, 14 records [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46] are rejected, because they aim at illustrating commercial
applications and marketing strategies, while 14 records [6],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59] are focused on non-relevant domains, such as
blockchain, security, and explainable AI. Five records [60],
[61], [62], [63], [64] are excluded because they are related to
management and logistics systems rather than to the topic of
this systematic review. Considering the goal of the present
study, six records [65], [66], [67], [68], [69], [70] are not
included, since they are related to social, ethical, policy or
data privacy issues.

The remaining records (called reports from now on), which
amounted to 71, were retrieved and then scrutinized for
eligibility for this systematic review. From these 71 reports,
two reports [71], [72] are not available as full text, and another
four have been characterized as ‘‘Retracted’’, resulting in
65 being included in this review. Eight [73], [74], [75],
[76], [77], [78], [79], [80] are related to infrastructure
applications without a significant contribution to the DL
analysis domain. These studies are typically focused on an
incremental approach with the objective of building systems
based on already developed DL architectures. In [81] and
[82], two well-structured datasets are proposed; however,

these studies have no focus on analysing DL models. The
authors propose a commercial application in [83], while
reports in [84] and [85] are systematic reviews. Hence,
the reports mentioned above have been excluded from the
analysis of this systematic review, resulting in a total of
52 studies considered for further analysis.

C. INCLUSION-META-ANALYSIS STUDIES
The final step of the PRISMA methodology consists of the
systematic reading and meta-analysis of the reports -a total of
52- (from now on, called studies), to respond to the following
questions:

• How is anomaly detection in precision agriculture
through DL? (Subsection IV-A)

• Do the examined studies address the imposed chal-
lenges as an anomaly/outlier detection problem?
(Subsection IV-A1)

• What topics of agriculture (from now on, called cate-
gories) are more relevant to the detection of anomalies?
(Subsection IV-A2)

• What are the types of anomalies related to each
category? (Subsection IV-A3)

• Except from RGB imagery, do the examined studies
applied in agriculture rely on additional modalities; and
if yes which? (Subsection IV-B)

• What are the data types of the examined studies rely on?
(Subsection IV-B1)

• What are the training objectives of the proposed DL
architectures, and what is their supervision spectrum?
(Subsections IV-C1, IV-C3)

• What is the structure of the proposed frameworks,
and what types of DL networks do they rely on?
(Subsections IV-C, IV-C2)

• What are the datasets used in the agriculture domain?
(Subsection IV-D)

• Do the authors rely on widely used datasets or propose
their own - Do they report cross-domain evaluation?
(Subsection IV-D)

III. THEORETICAL BACKGROUND
In this section, the fundamental characteristics of Artificial
Neural Networks (ANNs) are presented. ANNs aim to
simulate the human brain’s processing procedures by employ-
ing neurons and inner connections to recognize patterns
and relationships extracted from features learned by the
trained data [86]. A special category of ANNs is the Deep
Neural Networks (DNNs) that employmultiple layers -named
hidden layers- in a sequence to encode the given data more
effectively. Both ANNs and DNNs are deployed with at least
one input layer that feeds the network with the input data
and the output layer that generates the output adapted to the
objective of the problem [13].
A particular category of DNNs is the Convolutional

Neural Networks (CNNs) that report impressive results when
applied to various tasks, including Computer Vision (CV)
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and Natural Language Processing (NLP). CNNs typically
consist of an input layer followed by multiple sequential
convolutional layers stacked with fully connected layers
before the output layer. In addition, CNNs consist of pooling
layers aiming to reduce the encoded information after each
convolutional layer, activation layers that deploy activation
functions (i.e., ReLU [87], Sigmoid [88], etc.) after each
layer and cost functions that are employed for optimizing
network parameters (weights) and error-calculation during
training [89]. Well-known CNN architectures include but
not limited to AlexNet [90], LeNet-5 [91], VGG [92], and
ResNet [93].
In the field of CV, CNNs have been used in various

domains to encode visual features with the main objectives
being but not limited to binary, multi-class or multi-label
classification. Although these tasks represent a large part
of the CV needs, there are additional relevant needs, such
as detecting anomalies, reconstructing images, generating
segmentation masks, and detecting objects of interest. Hence,
various and famous CNN-based architectures have been
proposed to address these objectives: Stacked Auto-Encoders
[94], U-Net [95], Faster R-CNN [96], among others.

However, the aforementioned architectures do not report
effective performance when aiming to encode spatiotemporal
data streams, such as video frames, that are typically the input
for activity recognition [97] and surveillance systems [98].
Thus, architectures such as 3D-CNNs have been designed
to learn the network parameters given a sequence of input
frames and apply the convolutional function to 3D space
simultaneously [99]. A more effective network to deal
with spatiotemporal data is a variation of a basic neural
network, namely the Recurrent Neural Network (RNN).
RNNs are effective when processing time-series data, such
as audio, NLP and sequences of images. RNNs have proved
to be effective in this respect, as they can address the
gradient problem (which may result in overfitting during
learning [100]), and are modelled by Long-Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU). Finally,
BiRNNs are employed for LSTM and GRU to effectively
capture the sequence of data in both forward and backward
directions [101].

IV. PROPOSED TAXONOMY
This section presents the proposed taxonomy of the studies
included in this review, in this point we have to clarify that a
study may utilize multiple methods, resulting in 64 examined
methods from the 52 studies. A high-level representation is
illustrated in Fig. 3, where the studies/methods are summa-
rized considering the key-examined attributes of the proposed
taxonomy for simplicity purposes. From left to right, the
relevant agriculture categories, their possible mapping to
anomalies, the corresponding type of anomalies, the data
modalities employed, the type of deployed architectures
and the training objectives are presented, visualizing their
detected interrelations as ‘‘path-flows’’ in the chart (the larger

a path-flow the stronger the interrelation). More details are
given in subsection V-E.

To provide a more focused investigation, the schema
proposed in this paper is divided into four sub-taxonomies
describing distinct characteristics: a) agriculture categories
and their relevance with anomalies, b) data modalities and
their types, c) training objectives and their deployed archi-
tectures, and d) datasets and evaluation. The meta-analysis of
the studies considering each sub-taxonomy is presented in the
following subsections.

A. AGRICULTURE CATEGORIES AND THEIR RELEVANCE
WITH ANOMALIES
The main objective of this sub-taxonomy is related to
capturing the primary intent of the presented work. For
each of the studies analyzed in this review, the agriculture
category is depicted in Table 1, followed by its relevance
with anomalies and the corresponding type of anomaly,
if applicable. The agriculture categories related to each
study are depicted in the rows, classified into one of three
possible types of relationships: ‘‘Yes’’ means that a study
explicitly models and addresses its primary objective as an
anomaly detection problem; ‘‘No’’ means that a study does
not model and address its primary objective as an anomaly
detection problem; and ‘‘Could be’’ means that a study
could be modified straightforwardly to model and address
its primary objective as an anomaly detection problem. The
columns represent the categorization of the studies according
to their type of anomalies. Specifically, there are three
possible types of anomalies: point anomalies, contextual
anomalies, and group anomalies. The studies that have ‘‘No’’
connection to anomalies are included in the column ‘‘N/A’’ in
Table 1.

1) AGRICULTURE CATEGORIES
This subsection includes the proposed categories related
to the analyzed studies. Specifically, 13 agriculture cate-
gories have been extracted - Disease detection, Weather
prediction, Land cover classification, Plant pest/disease
recognition, Cropmonitoring, Crop size andmass estimation,
Object/fruit/crop/obstacle detection, Soil moisture prediction
and soil type/quality classification, Crop/weed classification,
Crop yield prediction, Crop quality classification, Weed
resistance assessment, Land coverage optimization- which
collectively cover all the agricultural topics of the studies
examined. The ‘‘Plant pest/disease recognition’’ category
refers to detecting and recognizing pests and diseases.
In contrast, the ‘‘Disease detection’’ category is limited to
detecting whether a plant is potentially diseased. In addi-
tion, the ‘‘Crop/weed classification’’ category is related to
classifying weeds and crops into a range of possible types.
Finally, studies belonging to the category of ‘‘Land cover
classification’’ aim to distinguish various types of land
cover, e.g. forest and water, in contrast to studies belonging
to the ‘‘Land coverage optimization’’ category, aiming to
optimize the coverage of the land using onboard sensors,
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FIGURE 3. A flow-based representation of the key values extracted from the examination of the 52 studies and mapped to 64 DL training objectives.
From left to right, the various categories of agriculture and their relevance to the anomalies as well as their mapping to the types of anomalies. Next, the
reliance on the RGB modality, the nature of modalities and the architecture of the employed pipelines. On the right, are depicted the various training
objectives.

FIGURE 4. Image samples for illustrating the different types of anomalies. (a) Point anomalies [154] and (b) group anomalies [110].

typically UAVs equipment with cameras. In case a study
can be mapped to more than one agriculture category (due
to employing more than one method), then the secondary
category is marked with an ‘‘S’’ inside Table 1.

2) RELEVANCE WITH ANOMALIES
This subsection explains the approach followed for charac-
terizing each study as relevant or not to anomaly detection.
Specifically, we have defined three groups for determining
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TABLE 1. Studies categorization according to their agriculture category, relevance with the anomaly detection problem, and anomaly type.

FIGURE 5. Image samples for illustrating the contextual anomalies comparing temperature values in different locations inspired by [114].
(a) Temperature data at Cieza and (b) at Moratalla locations.

the relationships of presented studies to the problem of
anomaly detection. The first group includes the studies
that explicitly solve their identified problem as an anomaly
detection problem, i.e. typically through the detection of
outliers. The second group involves studies that usually
perform classification; hence, with an adaptation, they could
be considered studies associated with the detection of
anomalies. For example, this group involves studies that aim
to recognize plant diseases in a collection of images that also
include healthy samples. Finally, the studies that cannot be
considered or adapted to be characterized as anomaly-related
are included in the last group. Specifically, the studies in
this group usually aim to monitor crops or classify only
‘healthy’/’normal’ data points.

3) TYPE OF ANOMALIES
For the studies classified into one of the groups ‘‘Yes’’ or
‘‘Could be’’, the type of anomaly is specified, whereas for
the studies that are categorized as ‘‘No’’ the type cannot be
specified. According to [27], the different types of anomalies
are point, group, and contextual. To clarify the different
types, inspired by [27], examples are illustrated in Fig. 4
and Fig. 5. These image samples acquired and adapted from
[110], [114], and [154] help in distinguishing the different
types of anomalies. Point anomalies refer to individual data
points that are deviant from the rest of the data points in
a dataset, as illustrated in Fig.4 (a); there are a few leaves
that are affected by disease compared to healthy leaves.
Group anomalies are related to single data points that can be
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considered normal but, in a group, are considered abnormal,
as illustrated in Fig. 4 (b); there are a few damages on
the olives that are normal, but as a group of damages is
considered abnormal probably effected by disease or pest.
Finally, contextual anomalies are data points that can be
considered normal in a specific context; however, if they
are observed in another context, they could be considered
abnormal. According to Fig. 5 (a) the temperature values at
timestep 80 are low and can be considered normal compared
to Fig. 5 (b) that are higher and can be considered as
abnormal.

B. DATA MODALITIES AND THEIR TYPES
In this subsection, the data modalities and the corresponding
data types used in the studies of this systematic review are
presented. For each study, we have annotated the following
columns and rows according to Table 2: the first column
divides the studies into two main categories, ‘‘Non-RGB’’
and ‘‘RGB’’ for the characterization of each study with
yes or no, depending on whether it relies on RGB data
or not. Regarding the rows, the ‘‘Nature of modalities’’
represents the type of modalities each study relies on. If a
study processes only one modality, for example, images or
video frames, it is considered as single-modal. Otherwise,
if it relies onmultiple modalities, e.g. images and temperature
data, it is considered multimodal. The column ‘‘List of
modalities additional to RGB’’ includes a list of additional
to RGB modalities separated by a semicolon for each of the
studies depicted in column ‘‘Studies’’. Since RGB-related
and single-modal methods cannot incorporate additional
modalities, the cells of Table 2 for both Non-sequential
and Sequential data types remain empty. Finally, the ‘‘Data
types’’ column shows the data types of each study, namely:
Sequential, Non-sequential, Both, or Not described. This is
further explained in subsection IV-B1.

1) DATA TYPES
This subsection explains each data type mentioned in Table 2.
The nature of the data determines the type of the data.
i.e., temperature data are usually time series-based data,
as they typically involve temperature values periodically
over time. Another example is video data streams, which
are almost always time-series data, as they capture a
series of frames in video footage. Such data types are
declared as Sequential and include time-series-based data;
other examples include humidity-related data and speech
data.

Conversely, Non-sequential data are data that are not
time-dependent or do not follow a specific sequence; thus,
still images and data acquired from sensors as alarms -without
performing a periodic monitoring process- belong to this
category. The declaration of Both is related to multimodal
approaches that process sequential and non-sequential data
in different modalities. Finally, in case the authors do not
give sufficient details related to the nature of the data, Not
described is specified in Table 2.

C. TRAINING OBJECTIVES AND THEIR DEPLOYED
ARCHITECTURES
This sub-taxonomy encompasses details from the analyzed
studies regarding the training objectives of the proposed DL
architectures and the types of networks employed. It provides
insights into their pipeline architectures and illustrates the
range of supervision applied during the learning process.
Table 3 presents a four-level classification that includes
pipeline types, supervision spectrum, training objectives,
and DL network types. Specifically, the first column (of
Table 3) separates the studies according to their pipeline
architecture into ‘‘Single-step’’ approaches that typically
follow an end-to-end training approach to reach their final
objective and ‘‘Multi-step’’ approaches that rely on multiple
and separate stages of training to reach their final objective.
The single-step studies listed in Table 3 are presented with
only their final objective, except for the study [129], which
is also marked with an ‘‘S’’ for its secondary objective,
aiming to learn object detection and binary classification in
a single step. This is evident in the multi-step approaches,
which consistently include a secondary training objective.
A particular case is depicted in [138] where the final
objective of regression is deployed in multiple steps using
CNN and LSTM architectures. The studies are categorized
by their ‘‘Supervision Spectrum’’ during training into
one of the following options: unsupervised, supervised,
and reinforcement learning. More details are provided in
subsection IV-C3.

Additionally, the objectives pursued in each study during
training and applied during inference are detailed in the rows
of Table 3, subsection IV-C1. The corresponding DL network
types for each study are shown in the columns, as described
in subsection IV-C2. When a study relies on multiple DL
network types, these are declared sequentially with the letters
(a, b, c). In [142], the letter ‘‘b’’ appears twice because it
employs a two-stream (rather than a sequential) approach,
specifically LSTM + CNN-LSTM.

1) TRAINING OBJECTIVES
This subsection outlines the various training objectives pur-
sued in the reported studies, as shown in Table 3. Typically,
a DL network aims to classify the given input based on
extracted encoded features. Therefore, the training objectives
generally focus on learning features for extraction and/or
classification, including binary, multi-class, and multi-label
classification. A specific classification category includes
semantic segmentation approaches, which aim to classify
an image at the pixel level. This involves segmenting the
image to classify some or all pixels into one or more
categories. This can be further extended to instance seg-
mentation [155], panoptic segmentation [156] and referring
segmentation [157]. Moreover, DL network objectives often
involve generating region proposals for object detection
tasks, which typically include both the localization and clas-
sification of depicted objects into their respective categories.
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TABLE 2. Studies categorization according to their data modalities and their types.

TABLE 3. Studies categorization according to pipeline types, supervision spectrum, training objectives and deep learning network types.

Finally, a deep neural network’s objective might be to solve a
regression problem or to minimize or maximize a penalty or
reward during reinforcement learning.

2) DEEP LEARNING NETWORK TYPES
In addition, the various types of deployed deep neural
network architectures are noteworthy. The corresponding
type for each study is presented in the columns of Table 3.
Specifically, the types for each study include one or more
of the following: CNN, RNN (GRU, LSTM, BiLSTM,
RNN), RBF, CapsNet, WONN, SAE, ANN, ENN, Kernel
ELM, as well as N/D, which stands for ‘‘Not described’’
if the authors do not provide this information. For RNNs,

we also include the option of ‘‘RNN’’ when the spe-
cific type of RNN architecture is not detailed by the
authors.

3) SUPERVISION SPECTRUM
The supervision spectrum of the reported studies is one of the
key components that should be further analyzed. In general,
DL-based approaches use data to learn and ‘‘encode’’ input
features to perform specific tasks, i.e. classification and
detection, effectively. To this end, the training process
requires a large amount of annotated data, following a
supervised learning approach. On the contrary, approaches
that do not require annotated data and are trained without
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TABLE 4. Datasets and evaluation.

supervision, are known as unsupervised learning. These are
often associated with tasks like image reconstruction or
anomaly detection.

Finally, reinforcement learning is applied to complex
decision-making problems. In this approach, an agent inter-
acts with an environment to gain knowledge by minimizing
or maximizing penalties or rewards, meeting predefined
programmed conditions [158]. While reinforcement learning
can be considered unsupervised due to its lack of reliance
on labeled data, it also incorporates elements of supervised
learning by using unlabeled data to learn features based on
specific conditions. This ambiguity has led to the recognition
of reinforcement learning as a distinct category within the
supervision spectrum.

D. DATASETS AND EVALUATION
This sub-taxonomy provides a detailed examination of the
datasets and their evaluation domains. In Table 4, the
categorization of studies based on their dataset range is
illustrated, along with the specific dataset name for each
study. The category ‘‘Introduced’’ includes all datasets that
were first introduced by the authors in the corresponding
study. On the other hand, the category ‘‘Existed’’ includes
datasets that are widely used in the relevant literature,
including those that have been proposed previously, as well
as their subsets or extensions. The columns of the table
also depict the datasets used in pre-trained models and
map them to the corresponding studies. ‘‘Trained from
scratch’’ is indicated when an approach does not rely on a
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FIGURE 6. Statistical analysis of reported studies according to their
agriculture category and type of anomaly. Studies that cannot be adapted
to address their objectives as an anomaly detection problem have been
excluded from this analysis.

pre-trained dataset, and ‘‘N/D’’ is assigned to studies where
the authors do not provide this information. A special case
is noted for study [110], which uses both COCO [159] and
ImageNet [160] datasets in the pre-trained models. This
study relies on COCO weights for object detection and on
ImageNet weights for classification tasks. Additionally, the
column ‘‘Cross-domain dataset’’ specifies whether a study
performs a cross-domain evaluation and lists the dataset
used, it is worth mentioning that only 4 studies evaluated
using cross-domain datasets. Finally, an asterisk (*) denotes
the name of a cross-domain dataset used for evaluation by
study [142].

V. DISCUSSION
In this section, the characteristics of the studies under
investigation are presented and discussed according to
their agriculture category, data modalities, types, training
objectives, datasets, and evaluation methods.

A. AGRICULTURE CATEGORIES
Table 1 categorizes the studies according to their relevance
to anomaly detection and the types of anomalies addressed.
We have focused on the studies that are classified as ‘‘Yes’’
(dark red), which means that solve their problems as anomaly
detection issues, as well as on those that ‘‘could be’’ (purple)
adapted in order to address their objectives as anomaly
detection problems. Hence, Fig. 6 depicts the 28 studies that
address or could be adapted to address their objectives as
anomaly-related problems based on point, group, or contex-
tual anomaly types. Specifically, two studies align with or
could be adapted to address their objectives as contextual
anomalies: (a) the crop yield prediction category, which
leverages historical yield data across various crops to identify
anomalies, and (b) the weather prediction category, which
analyzes specific contextual data (e.g., area and season) to
detect anomalies in weather patterns. Furthermore, one study
focuses on detecting group anomalies by identifying small
damaged regions on crop leaves potentially indicating a
disease.

From Fig. 6, it is clear that most studies (25) are
relevant to point anomalies. The majority of studies (21) fall

FIGURE 7. Statistical analysis of the reported studies according to data
modalities, nature of modalities and data types.

into two categories: ‘‘Crop/weed classification’’ and ‘‘Plant
pest/disease recognition’’. Both categories involve problems
related to anomaly detection; for example, a disease is a
deviation from a healthy plant and is thus considered an
anomaly. Moreover, studies focused on classifying crops
and weeds are more likely to address the problem as an
anomaly-related issue compared to those aimed at recogniz-
ing plant pests and diseases, which could often be adapted for
anomaly detection. This difference may be due to the nature
of the objectives in each category, as anomaly detection
typically involves separating samples into positive and
negative classes rather than recognizing specific categories of
anomalies.

B. DATA MODALITIES AND THEIR TYPES
Table 2 categorizes the examined studies (52) according
to their data modalities, the nature of these modalities
and their type. Considering all the research studies, Fig. 7
provides a summary of the studies according to a triple-level
hierarchy. This starts with the usage of the RGB modality,
then classifies according to the nature and type of the
modalities.

The vast majority of studies rely on processing data
within the visual spectrum (41), (purple). In addition, most
of these studies (29 in total) rely on a single modality
with their data types being Non-sequential. This indicates
that computer vision techniques play a significant role in
agricultural applications.

Finally, as shown in Fig. 7 (right), it is observed that most
studies unrelated to visual analysis modalities (8 compared
to 4 related to RGB), (dark red) anticipate sequential
data types. This was expected, as some studies take into
account time-series data such as temperature, humidity, and
moisture.

C. TRAINING OBJECTIVES
Table 3 presents the sub-taxonomy of the examined studies
based on the type of architecture (pipeline), supervision
spectrum, training objectives, and the type of DL network
employed. Only one study relies on unsupervised learning,
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FIGURE 8. Statistical analysis of the reported studies according to the
type of architecture (pipeline) and training objectives.

highlighting a promising area for further research. Due to the
nature of the anomaly detection problem - which focuses on
identifying a few anomalous samples within a large set of
normal ones - annotated large-scale datasets could be highly
imbalanced. Thus, unsupervised-based approaches trained
to reconstruct normal data can be used during inference to
identify anomalous data in the cases of reporting higher
reconstruction errors.

Considering that the vast majority of such models rely
explicitly on CNN types (30 compared to 11 that rely
explicitly on other types), Fig. 8 illustrates the statistical
analysis of the examined methods (64 in total) of the studies
without reference to the types of DL networks and their
supervision spectrum for simplicity.

The studies are firstly classified according to the type
of architecture, with 10 studies (19 methods) deployed as
multi-step architectures (purple) and the rest 42 studies
(45 methods) as single-step (dark red). Because studies in
the multi-step category consist of two training objectives
(except [138]), the total number depicted in this category is
19. There are also three studies in the single-step category
with two objectives, bringing the total number of single-step
studies to 45.

According to Fig. 8, it is evident that the majority of
training objectives (40) are related to classification problems,
including binary (12), multi-class (25), and pixel-wise
(3) classification tasks. This predominance is likely related
to the supervision spectrum, as most studies (39 out of 40)
utilize supervised learning, which is typically associated with
classification tasks.

D. DATASETS AND EVALUATION
Fig. 9 depicts the studies that use either a self-proposed
(introduced, dark red) dataset or an existing (widely used,
purple) dataset. As showcased, the majority of the studies
(34) were trained and evaluated using self-proposed datasets,
whereas only 18 models utilized existing datasets to leverage
a common benchmarking framework.

In addition, the datasets used in the pre-trained models are
well-known datasets in the computer vision domain, such as
ImageNet [160], COCO [159], and PASCALVOC [161]. This
practice is commonly followed by proposed architectures to

FIGURE 9. Statistical analysis of the reported studies according to the
pre-trained datasets and datasets used for fine-tuning.

utilize already trained weights from large-scale datasets and
perform fine-tuning on the target domain by updating all or
part of the network’s weights. A special case is noted for
study [110], which uses two datasets in the pre-trainedmodels
and hence the depicted datasets are in total 53.

Moreover, many studies that do not rely on a pre-trained
model and are trained from scratch amount to 25 in both
the existing (6) and introduced (19) categories. Finally, it is
noted that a significant number of studies (18 studies) do
not provide detailed information and are depicted as ‘‘Not
described’’. This includes studies that rely on pre-trained
models without specifying the details of the weights used; in
three studies [115], [116], [125], the authors do not provide
sufficient details of the datasets used for training, as also
noted in the study [126] that is trained from scratch.

E. ANALYSIS
In this subsection, the key attributes of the proposed taxon-
omy are summarized and presented to capture the overall
conclusions of the categorization. Additionally, a compre-
hensive overview of the computational resources required for
each DL approach is provided. For the overall discussion,
we have considered the most significant categorization
attributes extracted from three of the four sub-taxonomies, i.e.
a) agriculture categories and their relevance with anomalies,
b) data modalities and their types, and c) training objectives
and their deployed architectures, as depicted in Fig. 3.
The agriculture categories, shown on the left of Fig. 3, are

extracted from the 52 studies analysed in this document.More
than half of these studies either address or could be adapted
to address corresponding problems as anomaly detection
issues. A strong correlation to anomalies is illustrated in
the categories of plant pest/disease recognition and crop
monitoring. In the first category, the studies are related to
anomalies, such as detecting diseases and pests. In the second
category, the studies are related to monitoring, which can be
justified by the fact that crop monitoring studies are mainly
focused on data collection and recommendations rather than
the detection of anomalies within the data.

Moreover, the studies are mapped to related types
of anomalies. For non-anomaly-related studies, further
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categorization is not necessary until the training objectives
are considered. For the rest, a dominant assignment to point
anomalies is depicted. This can be explained by viewing
the subsequent steps (RGB/Non-RGB, Single-modal/Multi-
modal), where the majority of the studies rely only on
the RGB modality. Given that these studies process still
images, the detection of point anomalies is strongly related
to identifying outliers within the data.

In addition, the type of architecture reveals that studies
are implemented using either a single-step or multi-step
approach, without a particular focus on anomaly-related
studies. In contrast, studies irrelevant to anomaly detection
are strongly correlated with single-step architectures, indicat-
ing that these studies are more focused on solving specific
domain problems, such as crop size and mass estimation.

Furthemore, all studies are analysed andmapped according
to their training objectives. Taking into account that many
studies address multiple methods, the total number of training
objectives is 64. There is a clear association of single-step
methodswith classification tasks, either binary ormulti-class.
Notably, multi-step approaches typically involve learning
features in one step and using them in the next.

Finally, We have reviewed the 52 studies for extracting
their hardware dependencies, particularly Graphical Process
Unit (GPU) usage as a vital part of DL approaches. It is
worth noting that computational demands such as disk space,
Random Access Memory (RAM), and Central Process Unit
(CPU) are usually not reported by the authors however we
can briefly state that the studies rely on Intel i5 and i7 CPUs
and use 16GB RAM with few of them to use 64GB or more.
Regarding GPU usage, from the 52 studies only 22 provide
comprehensive implementation details; with three of them
using only CPU for training or inference and the rest (19)
using NVIDIA GPUs. There is a variety of virtual RAM
for the GPU ranging from 2GB to 128GB depending on
the training process and the network architecture. Regarding
DL network types, from the 22 studies 18 employ CNN
architectures, two RNNs, and two both CNN and RNN,
leading to a strong correlation of GPU needs with CNN
approaches.

VI. CONCLUSION
In this literature review, we identify, filter and analyze
DL-based methods related to precision agriculture and their
correlation to the anomaly detection problem. Following
the PRISMA methodology, the records were collected
and filtered, then further reviewed and categorized into a
taxonomy that provides insights for researchers in related
domains. A detailed summary covering four aspects of the
reported studies is illustrated: a) agriculture categories and
their relevance with anomalies, b) data modalities and their
types, c) training objectives and their deployed architectures,
and d) datasets and evaluation. Themeta-analysis is presented
in four tables and through a graphical view for easy extraction
of tangible outcomes.

The analysis outcomes reveal several key trends, including
an increase in the publication of studies in the precision
agriculture domain in recent years, a correlation between
plant disease and pest recognition and the anomaly detection
problem, a preference for using single data modalities with
a focus on visual analysis, the widespread use of domain-
specific datasets, a lack of large-scale datasets applicable for
multiple objectives, and the careful selection of DL methods
for addressing classification problems.

Future work includes the analysis of domain-specific
datasets for further usage and improvements, aiming to apply
them to various agriculture-related tasks focused on detecting
and identifying possible anomalies in the field. This can be
further investigated through crowdsourced data collection,
synthetic dataset generation, or dataset consolidation.
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