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Abstract: Gas cylinder detection and the identification of their characteristics hold con-
siderable potential for enhancing safety and operational efficiency in several applications,
including industrial and warehouse operations. These tasks gain significance with the
growth of online trade, emerging as critical instruments to combat environmental crimes
associated with hazardous substances’ illegal commerce. However, the lack of relevant
datasets hinders the effective utilization of deep learning techniques within this domain. In
this study, we introduce CylinDeRS, a domain-specific dataset for gas cylinder detection
and the classification of their attributes in real-world scenes. CylinDeRS contains 7060 RGB
images, depicting various challenging environments and featuring over 25,250 annotated
instances. It addresses two tasks: (a) the detection of gas cylinders as objects of interest,
and (b) the attribute classification of the detected gas cylinder objects for material, size,
and orientation. Extensive experiments using state-of-the-art (SotA) models are reported
to validate the dataset’s significance and application prospects, providing baselines for
further performance evaluation and in-depth analysis. The results show a maximum mAP
of 91% for the gas cylinder detection task and a maximum accuracy of 71.6% for the at-
tribute classification task, highlighting the challenges posed by real-world scenarios and
underlining the proposed dataset’s importance in advancing the field.

Keywords: cylinder; dataset; object detection; image classification; attribute extraction;
deep learning

1. Introduction
In recent years, computer vision has witnessed remarkable advancements, enabling

machines to perceive and understand visual information across a wide range of appli-
cations. Pivotal and well-established focus areas, including object detection and object
attribute classification, have been extensively studied, while the availability of standard-
ized datasets [1–4] has greatly facilitated the exploration of several research challenges
associated with these tasks by serving as means to assess the comparative performance of
different algorithms and techniques. Recently published deep learning techniques have
shown that they can be highly effective and efficient in handling detection and classification
tasks when coupled with image datasets with high-quality annotations [5–7]. This progress
has led to significant breakthroughs in several fields, such as face detection and recognition,
activity recognition, crowd analysis, as well as intelligent surveillance [8–13].
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Apart from the need for datasets for typical visual tasks, the demand for domain-
specific datasets is rising, driven by the increasing need for automation, continuous moni-
toring, and optimization of critical tasks across several domains, such as agriculture [14,15]
and biomedical research [16,17]. In addition, domain-specific datasets affect the perfor-
mance of machine learning models by improving their capability to accurately detect
patterns and objects, while also enhancing their ability to generalize in unobserved content.
An interesting and intriguing domain-specific application is related to the detection and
analysis of cylinders, particularly used for transferring gases under low or high pressure,
namely gas cylinders [18]. This application holds significant potential use cases in various
operations, such as monitoring industrial facilities handling gas cylinders, preventing
accidents associated with these items, as well as improving warehouse safety and storage
efficiency [19,20]. In addition, the illegal trade and use of Ozone-Depleting Substances
(ODSs) and hydrofluorocarbons (HFCs) included in gas cylinders, and the growing concern
regarding the online commerce of hazardous substances that pose significant threats to
the environment [21–23], require innovative and efficient solutions that can identify and
mitigate the publishing of such advertisements on various digital platforms.

While significant progress has been made in generic object detection and attribute
classification research [24,25], the existing datasets primarily focus on everyday scenes
containing common objects [26–30]. This focus overlooks the specificity and diversity
required for robust gas cylinder detection since the available datasets fail to account for the
variations in gas cylinders’ material, size, and orientation, required for the identification of
these attributes. In the context of domain-specific computer vision applications, synthetic
data are widely used to compensate for the lack of real-world data [31]. However, there
usually exists a notable gap between synthetic and real-world datasets in terms of quality,
data bias, fairness, as well as potential ethical considerations and legal implications [32].

To address these limitations, we introduce CylinDeRS [33], a comprehensive domain-
specific dataset for cylinder detection in real-world scenes and the classification of their
attributes. The dataset contains a diverse compilation of images captured in various set-
tings, ranging from industrial facilities and warehouse complexes to commercial spaces,
covering both indoor and outdoor environments. The images feature gas cylinder objects in
challenging conditions, including varying lighting scenarios, occlusions, and cluttered back-
grounds, closely representing real-world situations. Figure 1 illustrates a selection of these
images, highlighting the variety and complexity present in the dataset. The CylinDeRS
dataset is publicly available from the Roboflow repository (https://universe.roboflow.
com/klearchos-stavrothanasopoulos-konstantinos-gkountakos-6jwgj/cylinders-iaq6n (ac-
cessed on 17 January 2025)), enabling the research community to evaluate and extend its
applications further.

The CylinDeRS dataset contains 7060 images and 25,260 annotated instances, making
it a dataset of practical scale tailored to object detection and classification within the special-
ized domain of gas cylinders. Although not as extensive as some general-purpose object
detection datasets, its domain-specific focus ensures high relevance and utility for this
application. CylinDeRS distinguishes itself through its diversity, encompassing cylinders
of varying sizes (short and long), materials (metal and fiber), and orientations (standing
and fallen), often coexisting within a single image. This combination of material attributes,
alongside semantic annotations for size and orientation, provide a more comprehensive
representation than many SotA visual datasets. The dataset also introduces significant com-
plexity, driven by the subtle distinctions among the included gas cylinders, thus making
it challenging to achieve accurate detection and classification. Moreover, the presence in
a single image of anywhere from one to one-hundred-forty-one cylinders with varying
attributes further amplifies its difficulty, setting it apart from the existing object detection

https://universe.roboflow.com/klearchos-stavrothanasopoulos-konstantinos-gkountakos-6jwgj/cylinders-iaq6n
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datasets. Captured in diverse real-world scenarios, the images feature cluttered environ-
ments, occlusions, and other challenges, underscoring the dataset’s value for advancing
object detection and attribute classification tasks.

Figure 1. Sample images from the proposed CylinDeRS dataset, acquired under CC BY 4.0 li-
cense: (top left to bottom right) images 1–2 [34], images 3–4 [35], images 5–6 [36], image 7 [37], and
image 8 [38].

Every image in the CylinDeRS dataset is manually inspected and thoroughly anno-
tated, with precise bounding box annotations outlining the contours of the gas cylinders
using the Roboflow Annotate tool (https://docs.roboflow.com/annotate/use-roboflow-
annotate (accessed on 17 January 2025)). Each gas cylinder instance within an image is
further associated with three labels, indicating its attributes from a total of nine distinct
classes, grouped as follows: material (metal, fiber, or unknown material), size (short, long,
or unknown size), and orientation (standing, fallen, or unknown orientation). The two
sets of annotations (bounding boxes and attribute classes) serve as ground truth labels for
training and evaluating the performance of object detection and attribute classification
models, respectively.

The entire dataset creation process, from the collection of images to the data pre-
processing steps and the data annotation steps, is provided in the form of a well-defined
methodology, which could serve as a guide for researchers aiming to create domain-
specific datasets. To establish the application value of CylinDeRS, an extensive benchmark
evaluation has been conducted using state-of-the-art (SotA) deep learning models trained
on the proposed dataset. The experiments not only demonstrate the effectiveness of the
dataset in terms of training deep learning models to automate practical gas-cylinder-
related applications but also highlight the challenges that emerge with these tasks. Our
contributions are summarized as follows:

• The introduction of CylinDeRS, a comprehensive dataset of 7060 images, with a total of
25,269 gas cylinder object instances, explicitly designed for gas cylinder detection and
the classification of their key attributes (material, size, and orientation) in real-world
visual scenes;

• The proposal of a systematic methodology for creating domain-specific datasets,
including all the steps from data collection and pre-processing to data annotation;

• Extensive experiments using SotA object detection and attribute classification mod-
els, resulting in setting baselines and providing pre-trained benchmarks for further
research, performance evaluation, and in-depth analysis.

https://docs.roboflow.com/annotate/use-roboflow-annotate
https://docs.roboflow.com/annotate/use-roboflow-annotate
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The rest of the paper is organized as follows. Section 2 covers the related well-known
publicly available datasets from the fields of object detection and object attribute classifi-
cation. Section 3 presents the detailed methodology followed for the development of the
dataset and defines its structure and characteristics. Section 4 describes the experimen-
tal setup, while Section 5 presents and discusses the evaluation results and the models’
performance. Finally, Section 6 concludes this work and outlines future steps.

2. Related Work
Datasets have always been pivotal resources for computer vision research. Within the

domains of object detection and object attribute classification, the training of Deep Neural
Networks (DNNs) is inseparable from various image datasets since they play a crucial
role in developing DNN-based models for such tasks. Common object detection datasets,
including (but not limited to) Pascal Visual Object Classes (Pascal VOC) 2012 [1], Common
Objects in Context (COCO) [2], and Open Images [39], provide annotations related to the
spatial position of objects within the image for a wide range of categories. Moreover, since
visual attributes represent a significant portion of the details present within a scene, objects
can be described by a diverse range of attributes that capture their visual appearance (color,
texture, material) and geometry (size, shape, and orientation) [29]. To this end, widely
used object attribute classification datasets, including COCO Attributes [3], Web Image
Dataset for Event Recognition (WIDER) Attribute [40], iMaterialist [4], Visual Attributes
in the Wild (VAW) [29], and Parts and Attributes of Common Objects (PACO) [30], in-
corporate comprehensive annotations, enriching the understanding of object attributes in
various contexts.

2.1. Datasets for Visual Object Detection

Pascal VOC 2012 is a benchmark dataset featuring 11,530 images across 20 categories,
with 27,540 Regions of Interest (RoIs) and 6929 segmentation annotations. Its straightfor-
ward categories and annotations have made it a fundamental resource for object detection
and segmentation tasks. COCO comprises over 300,000 images annotated with 80 object
categories and more than two million instances. Its diversity in scale, pose, and lighting
conditions have established it as a valuable dataset for complex tasks such as object detec-
tion and panoptic segmentation. Open Images is one of the largest object detection datasets,
containing 1.9 million images with 16 million bounding boxes for 600 categories. Its vast
scale and extensive task support make it a versatile dataset for object recognition research.

2.2. Datasets for Visual Object Attribute Classification

COCO Attributes extends the COCO dataset by annotating 196 attributes for
180,000 objects across 84,044 images, resulting in 3.5 million object–attribute pairs. These
annotations offer a nuanced understanding of objects’ visual and contextual properties.
WIDER Attributes [40] focuses on human-specific characteristics, with 800,000 attribute
labels across 13,789 images. Each bounding box includes 14 human attributes, such as age,
clothing, and activity. The iMaterialist Fashion Attribute [4] dataset specializes in fashion-
related tasks, offering over 1 million images annotated with 228 fashion attributes grouped
into eight categories. It provides high-quality, fine-grained labels for tasks like attribute
recognition and clothing recommendation systems. VAW [29] contains 72,000 images with
620 positive and negative visual attributes, resulting in 927,000 attribute labels, including
color, shape, and texture, making it a valuable resource for attribute prediction.

While common object detection and object attribute classification datasets have played
a vital role in advancing the field, they lack the specific characteristics required for the
robust detection of gas cylinders and extraction of their attributes. To the best of our
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knowledge, there is a scarcity of dedicated datasets specifically designed for this purpose.
The proposed CylinDeRS dataset fills this gap and aims to overcome the limitations of the
existing publicly available datasets by providing a diverse collection of images capturing
several arrangements of gas cylinders in challenging real-world scenarios.

3. The CylinDeRS Dataset Creation
In this section, we describe the steps followed for the creation of the CylinDeRS

dataset. Initially, the process of exploring candidate image sources for data acquisition
and selecting retrieval keywords is presented. Next, the data pre-processing steps are
defined, and the annotation pipeline is thoroughly showcased. The ethical considerations
regarding individual privacy and the employed anonymization process are addressed.
Finally, the dataset’s structure is reported. These clearly defined steps also serve as a
proposed methodology that could be used by researchers to construct their own domain-
specific datasets.

3.1. Dataset Creation Methodology

Figure 2 illustrates the proposed methodology for creating domain-specific datasets.
In the first step, candidate sources for the data acquisition process are identified. Each
source undergoes exploration to identify relevant data (images and potentially available
ground truth labels). In the next step, duplicate image data are removed using an image
hashing algorithm, followed by manual review and removal processes, generating an
updated image collection. The annotation process follows, involving meticulous curation
through manual review, refinement of existing annotations, and addition of new anno-
tations. Finally, the data are anonymized (by blurring identifiable faces) to address any
privacy risks, resulting in the final list of images and ground truth annotations. This com-
prehensive process ensures the consistency and reliability of both image and annotation
data, consequently promoting reproducibility and facilitating in-depth explorations and
analyses of the dataset. Next, each of the main steps of this process are described in detail.

Figure 2. The step-by-step presentation of the proposed dataset creation methodology. Four main
phases are illustrated: data acquisition, filtering, annotation, and anonymization, all contributing to
the creation of the final list of images and annotations.
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3.1.1. Data Acquisition

The first step in the creation of the CylinDeRs dataset involves the collection of
candidate images for gas cylinder detection and attribute classification. To this end,
we identified potential sources by conducting extensive search, primarily focusing on
publicly available repositories, including Kaggle (https://www.kaggle.com/ (accessed
on 17 January 2025)), Roboflow (https://roboflow.com/ (accessed on 17 January 2025)),
V7 Labs (https://www.v7labs.com/open-datasets (accessed on 17 January 2025)), and
Google Datasets (https://datasetsearch.research.google.com/) (accessed on 17 January
2025). Through this exploration, Roboflow [41] was identified as the most suitable source
for our specific scope as it offers publicly available datasets closely related to gas cylin-
der objects.

The proposed process of acquiring candidate images suggests utilizing a keyword-
based search through synonyms, synonym sets, and English words linked to the prospective
classes for the object detection and attribute classification tasks, resulting in more than
fifty datasets [34–38,42–90]. In particular, the specific keywords we used are “cylinder”,

“gas cylinder”, “gas tank”, “gas cylinder detection”, “gas cylinder classification”, “short cylinder”,
“long cylinder”, “oxygen cylinder”, “lpg cylinder”, “horizontal cylinder”, “fallen cylinder”, “steel
cylinder”, “metal cylinder”, “fiber cylinder”, “metal tank”, “steel tank”, and “fiber tank”. This
approach yielded a diverse collection of 29,487 relevant images sourced from various
settings, including industrial facilities, warehouses, and commercial spaces, covering a wide
range of variations, accounting for diverse lighting conditions, occlusions, and cluttered
backgrounds, reflecting the complexities encountered in real-world applications.

3.1.2. Data Filtering

Following the download of all the candidate images and the respective pre-existing
annotations (if any), the next step was an extensive filtering process, meticulously curating
the images to maintain high reliability and quality. As part of this process, a Python
(https://www.python.org/ (accessed on 17 January 2025)) script was employed to identify
and remove duplicate images, streamlining the dataset for more efficient analysis. Initially,
an MD5 hash-based approach [91] was utilized to eliminate redundant copies while storing
one representative image from each set of duplicates. This step reduced the total number
of images to 12,563. However, the manual inspection of the dataset images revealed that
this approach occasionally retained multiple copies of nearly identical photos due to subtle
variations, leading to distinct MD5 hash values.

To enhance the precision of duplicate identification, a more sophisticated approach
was adopted, incorporating perceptual hashing, specifically the pHash (https://github.
com/JohannesBuchner/imagehash (accessed on 17 January 2025)) algorithm. The updated
script, which integrated the imagehash (https://pypi.org/project/ImageHash/ (accessed
on 17 January 2025)) library, achieved more robust and accurate performance on discerning
and managing similar images within the dataset, ensuring the preservation of distinct
visual content while effectively eliminating redundancy. As a concluding step in the
filtering process, the remaining images underwent manual review to identify and remove
any duplicate images the algorithm may have overlooked. After this process, we concluded
with a total collection of 7060 images.

3.1.3. Data Annotation

The next step includes the annotation process of the curated collection of images
through the inspection and refinement of the potentially pre-existing annotations and the
addition of new annotations. A team of four researchers was employed, each responsible
for manually annotating a subset of the dataset. The splits were overlapping, so it could be

https://www.kaggle.com/
https://roboflow.com/
https://www.v7labs.com/open-datasets
https://datasetsearch.research.google.com/
https://www.python.org/
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://pypi.org/project/ImageHash/
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ensured that every image (and subsequently each instance) is annotated by at least two
annotators. In case of a disagreement, a third annotator was involved to resolve it.

It is essential to highlight the distinction between the two tasks covered in this study:
gas cylinder detection and gas cylinder attribute classification. For the detection task,
the CylinDeRS dataset has been thoroughly annotated with precise bounding box an-
notations around the objects of interest, providing the location information (bounding
box coordinates) and the corresponding class (i.e., “gas cylinder”) for every gas cylinder
instance in the image. For the attribute classification, each instance is associated with
three labels describing its material, size, and orientation attributes. Currently, CylinDeRS
supports three attributes with a total of nine classes: material (metal, fiber, and unknown
material), size (short, long, and unknown size), and orientation (standing, fallen, and
unknown orientation).

The annotation process for each image and the respective instances followed a system-
atic procedure consisting of three essential steps:

• Inspection: Firstly, a comprehensive manual inspection of the pre-existing annotations
should be considered, as provided by the original datasets gathered during the data
acquisition step (Section 3.1.1). In our case, this critical examination aimed to eval-
uate the initial accuracy and reliability of the bounding box annotations. Moreover,
the process involves a thorough examination of the dataset to identify images where
gas cylinders lack bounding box annotations. Any duplicate annotations of the same
instance are removed, and potential discrepancies or errors in the existing annota-
tions are identified, establishing a solid foundation for subsequent refinement and the
creation of new annotations. Overall, a total of 448 duplicate bounding boxes were
identified, 672 bounding boxes were missing, and 3239 instances contained errors in
the existing annotations since the bounding boxes were not perfectly aligned with the
instances, requiring resizing or adjustments in position (left, right, up, or down).

• Refinements: The next stage revolves around refining the size and labels of the pre-
existing bounding boxes. In CylinDeRS, a diligent process was followed where the
bounding boxes were manually adjusted to precisely encapsulate the gas cylinder
instances, maximizing their accuracy and adherence to the true boundaries of the
objects. Furthermore, the original labels associated with the pre-existing bounding
boxes were refined, ensuring they accurately represent the class of “gas cylinder”,
which is in scope for the proposed dataset’s object detection task. This iterative
refinement process elevated the precision and consistency of the annotations, further
enhancing the dataset’s overall quality.

• New annotations: The final stage of the annotation process resides in providing new
annotations for the objects of interest. This process involves generating new annota-
tions, serving a two-fold purpose: rectifying missing bounding box annotations for
gas cylinder objects and assigning instance-level labels for the attribute classification
task. Initially, the process includes the annotation of gas cylinder instances in images
lacking annotations as well as in those with partial annotations, as identified through
the inspection step. The boundaries of the gas cylinders are precisely delineated,
accompanied by the corresponding “gas cylinder” class. Each instance is associated
with an additional set of three labels representing the gas cylinder’s material, size,
and orientation attributes, considering the overall context of the image. The new anno-
tations contribute to a comprehensive dataset that accurately depicts the gas cylinders’
spatial arrangement, also providing detailed information about their attributes.
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3.1.4. Ethical and Legal Considerations

The CylinDeRS dataset, while primarily focused on gas cylinder objects, inadvertently
features instances of individuals. Through a rigorous manual inspection of the entire
dataset, individuals were identified in 800 out of the 7060 images. Considering that all
collected images sourced from the datasets [34–38,42–90] are licensed under the CC-BY 4.0
license, enabling derivative works, the ethical considerations were explored, particularly
regarding individual privacy. In adherence to legal frameworks and ethical principles, we
addressed potential identifiability concerns and privacy risks associated with the dataset.
As part of our commitment to responsible data usage, all identifiable faces within the
dataset exhibiting clear details have been anonymized using a blurring technique. This
precautionary measure mitigates the risk of unintentional identification, ensuring com-
pliance with data privacy regulations and ethical standards. It is important to note that
anonymization was applied selectively; for faces with limited visibility, anonymization was
deemed unnecessary to maintain the dataset’s utility for gas cylinder object analysis while
still adhering to ethical standards. This balanced approach emphasizes our commitment to
responsible data management.

3.1.5. Challenges

The creation of the CylinDeRS dataset involved several challenges that impacted
both the annotation process and the overall representativeness of the dataset. One major
challenge was the annotation complexity, especially when dealing with images containing
multiple gas cylinders or instances where the gas cylinders were occluded. Drawing
accurate bounding boxes around the gas cylinders and assigning the correct attributes
required extensive manual review. Another challenge was the variability in gas cylinder
appearance as gas cylinders differ widely in shape, size, and material depending on their
use and environment. Cylinders in industrial settings, for example, are often stored in
groups, stacked, or partially obscured by other objects, necessitating careful selection of
images and data augmentation strategies to ensure a representative sample. Environmental
factors also played a role, with the surrounding context—such as lighting, background
clutter, or the presence of large objects—affecting the apparent size and orientation of
gas cylinders. For instance, a gas cylinder might appear smaller if placed next to a large
building or vehicle, requiring semantic analysis to accurately determine its size. Lastly,
the dataset faced a data imbalance issue as some attribute categories, such as “fallen” and
“unknown” orientations, had fewer instances compared to more common categories like
“standing” or “short”. This imbalance could introduce bias in model training, making it
more challenging for algorithms to accurately detect and classify less frequent scenarios.

3.2. CylinDeRS Dataset

The result of the aforementioned steps is an extensive collection of 7060 images, each
featuring a variable number of gas cylinder objects. In particular, CylinDeRS contains a
total of 25,269 instances of gas cylinders, with an average of 3.6 instances per image. Table 1
provides an overall understanding of the dataset’s scale and presents a comprehensive
overview of its structure. It details the distribution of images and gas cylinder instances as
established after the annotation process, ensuring a fair distribution of both the number
of images and instances among training, validation, and test sets. The table also includes
the average number of gas cylinders per image for each set. Notably, following a 70:20:10
split ratio, the dataset comprises 4915 training images, 1434 validation images, and 711 test
images, with 18,137 instances in the training, 4862 in the validation, and 2270 gas cylinders
in the test set.
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Table 1. CylinDeRS dataset statistics: number of images, number of gas cylinder instances, and aver-
age number of gas cylinders per image for the training, validation, test, and overall sets.

Train Val Test Total

No. of Images 4915 1434 711 7060
No. of Instances 18,137 4862 2270 25,269
Avg. No. of Instances per Image 3.7 3.3 3.2 3.6

Figure 3 showcases a selection of representative samples for the two supported tasks,
providing a glimpse into the dataset’s content and highlighting its varied and complex
nature. In particular, Figure 3a illustrates indicative samples regarding the gas cylinder
detection task, where each cylinder object is localized and the corresponding bounding
box is delineated. Beyond bounding boxes, the dataset includes attribute annotations for
each gas cylinder instance. Figure 3b showcases representative samples for the supported
attributes used in the attribute classification task. These annotations delve into various
aspects and characteristics, enhancing the dataset’s utility and expanding its applicability.

(a) Gas cylinder detection.

(b) Attribute classification.
Figure 3. CylinDeRS dataset samples regarding (a) gas cylinder detection, where images are depicted
with the corresponding ground truth bounding boxes, and (b) gas cylinder attribute classification,
where gas cylinder instances are listed with their material (fiber, metal, or unknown), size (short,
long, or unknown), and orientation (standing, fallen, or unknown) attribute labels.
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To comprehensively characterize gas-cylinder-related objects, we defined three key
attributes based on [92], each with at least three associated classes:

Material: The CylinDeRS dataset covers three classes in terms of the material attribute,
“metal”, “fiber”, and “material unk(nown)”, to represent distinct compositions of gas cylin-
ders. Cylinders in the “metal” class are primarily composed of metallic materials, such as
steel or aluminum [92] (p. 73), exhibiting robustness, strength, and durability, making them
suitable for various industrial, commercial, and medical settings. The “fiber” material class
comprises gas cylinders consisting of an inner container that is over-wrapped with durable
lightweight fiber-based materials (glass, aramid, or carbon), offering a high strength-to-
weight ratio [92] (p. 70). They find applications in scenarios where weight reduction is
essential, such as aerospace or portable gas storage for outdoor activities. The “material
unk(nown)” class encompasses gas cylinders that may lack distinct features and exhibit
irregularities or burn marks, complicating the identification of their material composition.

Size: The size attribute corresponds to three classes, “short”, “long”, and “size
unk(nown)”, representing variations in the physical dimensions of gas cylinders and
providing granularity for size-based categorization. It is important to emphasize that defin-
ing the size attribute of an object within an image requires semantic analysis of the content
as the surrounding scene significantly contributes to the contextual interpretation of the
object’s size. For instance, a gas cylinder next to a skyscraper will appear smaller than the
same cylinder next to a bicycle. The CylinDeRS dataset considers this semantic information
during annotation, enabling accurate size attribute determination. Gas cylinders catego-
rized as “short” have relatively compact vertical length (height) dimensions with a low
Length-to-Diameter ratio (L/D), primarily used for low-pressure liquefied gas services [92]
(p. 70). They are typically more maneuverable and more accessible to handle in environ-
ments with spatial constraints, finding application in diverse settings such as domestic
use and laboratories. Conversely, “long” instances in the CylinDeRS dataset exhibit taller
dimensions compared to their “short” counterparts, with a high L/D ratio accommodating
larger volumes of gases. They are generally used for high-pressure non-liquefied gas ser-
vice [92] (p. 70) and are usually well suited for applications requiring extended usage before
replacement or refill, such as industrial processes and manufacturing. Within the “size
unk(nown)” class, the instances predominantly feature occluded gas cylinders, resulting in
difficulty in determining their size. These occlusions are usually due to structural obstacles
(walls, beams, pillars, etc.), stacking/overlapping arrangements (stored in storage facilities,
transportation vehicles, etc.), or partial obstruction by other objects.

Orientation: Three classes are supported for the orientation attribute, “standing”,
“fallen”, and “orientation unk(nown)”. Similarly to the size attribute, orientation is inher-
ently a contextual feature, with its determination depending on the semantic interpretation
of the given scene. In CylinDeRS, semantic information related to the orientation of the
gas cylinders is incorporated during annotation, wherein the context of the entire image is
taken into consideration before assigning labels to specific instances within the image. Gas
cylinders labeled as “standing” are positioned upright, with their longitudinal axis aligned
vertically. They are typically secured stably, ensuring proper containment of pressurized
gases [92] (pp. 186, 228, 494, 525). Gas cylinders categorized as “fallen” are depicted in a
horizontal or tilted orientation, suggesting that they are not upright and have deviated from
their standard standing position. This class indicates instances of gas cylinders potentially
posing safety concerns due to the risk of uncontrolled movement or gas release.

Table 2 provides detailed statistics regarding the different attribute categories. As de-
picted in the table’s last column, the “metal” category dominates the material attribute
with a total of 20,514 instances, with “fiber” gas cylinders depicted in 4518 instances, while
the “material unk” category exhibits comparatively lower counts of 237. Within the size
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attribute, the total instances labeled as “short” are 13,450, followed by “long” with 6528
and ”size unk” with 5291. For the orientation attribute, the total “standing” instances,
23,311, significantly outnumber the others, with the “fallen” and “orientation unk” classes
depicted in 1379 and 579 instances, respectively.

The scarcity of instances in the “material unk”, “fallen”, and “orientation unk” cate-
gories within the CylinDeRS dataset can be attributed to the relatively uncommon nature
of these scenarios in real-world settings. Burnt or damaged gas cylinders (“material unk”)
are uncommon in typical industrial and warehouse settings. Similarly, safety regulations
minimize instances of “fallen” gas cylinders that are generally securely positioned and
adherent to safety standards to prevent accidents. Furthermore, the limited instances
within the “orientation unk” class primarily involve gas cylinders where the visible cues
and the semantic context necessary for accurate orientation determination are limited.
This is an unusual scenario in real-world cases. The imbalances in these categories reflect
the dataset’s fidelity to real-world occurrences, where certain situations are less frequent,
making them crucial for training models to also recognize and handle such uncommon
scenarios effectively.

Table 2. CylinDeRS dataset attribute category statistics: number of instances per attribute category
for the training, validation, test, and overall sets.

Attribute Category Train Val Test Total

Material
metal 14,769 (72%) 3948 (19%) 1797 (9%) 20,514 (100%)
fiber 3201 (71%) 862 (19%) 455 (10%) 4518 (100%)
material unk 167 (70%) 52 (22%) 18 (8%) 237 (100%)

Size
short 9705 (72%) 2553 (19%) 1192 (9%) 13,450 (100%)
long 4598 (70%) 1283 (20%) 647 (10%) 6528 (100%)
size unk 3834 (72%) 1026 (19%) 431 (9%) 5291 (100%)

Orientation
standing 16,688 (72%) 4497 (19%) 2126 (9%) 23,311 (100%)
fallen 1028 (74%) 250 (18%) 101 (8%) 1379 (100%)
orientation unk 421 (73%) 115 (20%) 43 (7%) 579 (100%)

4. Experimental Setup
This section delves into the details of the conducted experiments, covering the object

detection and attribute classification algorithms selected for training and evaluation using
the introduced gas-cylinder-related dataset. The primary objective of these experiments is
to assess the effectiveness and robustness of the selected models in detecting gas cylinders
and classifying their attributes, with a particular focus on enhancing their practical utility in
real-world scenarios. Moreover, the implementation and training processes are presented,
along with the augmentation techniques and the hardware and software configurations.
Finally, the metrics adopted for evaluating the models are discussed.

4.1. Gas Cylinder Detection

For the gas cylinder detection experiments, SotA object detection algorithms are
selected from three different object detector categories in order to explore a wide range
of architectures: Convolutional Neural Network (CNN)-based two-stage methods, CNN-
based single-stage approaches, and transformer-based architectures. The representative
models Faster R-CNN [93], YOLOv8 [94], YOLOv11 [95], and RT-DETR [96] are utilized for
each respective category:

Faster R-CNN [93] integrates a Region Proposal Network (RPN) into its architecture,
improving object detection performance. For experiments, we use Faster R-CNN with
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ResNet-101 [97] and Feature Pyramid Network (FPN) [98], which enhances detection,
especially for smaller objects.

YOLOv8 [94] is a unified model that predicts bounding boxes and object classes in
a single pass. It features components like the Backbone, Spatial Pyramid Pooling Fusion
(SPPF) layer, and C2f module for high accuracy and speed. We use the “YOLOv8m” version
for its favorable trade-off between performance and computational cost.

YOLOv11 [95] is the latest model in the YOLO family, combining adaptive attention
mechanisms and improved feature fusion for real-time performance and precise detection
across various object scales. The “YOLOv11m” model is used in our experiments.

RT-DETR [96] leverages transformer-based multi-head attention for real-time object
detection. It uses an efficient hybrid encoder for multi-scale feature interaction. We use the
“rtdetr-l” implementation for consistency with YOLOv8 and YOLOv11 in terms of model
comparison. Upon acceptance of this work, all models trained for the gas cylinder detection
task on the proposed CylinDeRS dataset will be made accessible to the community.

4.2. Gas Cylinder Attribute Classification

Regarding object attribute classification, CNNs have also been the predominant se-
lection in recent years [99,100]. Object attribute prediction is formally characterized as a
multi-label classification task, requiring the prediction of all attributes associated with a
given object [29,30,100]. However, the multi-label approach is unsuitable for the objec-
tive of this work, which requires the prediction of exactly three labels per gas cylinder
instance—one for each attribute. This requirement arises from the constraint that an object
cannot simultaneously exhibit more than one class of the same attribute. Moreover, the con-
ventional multi-class classification method is not applicable due to its inherent design for
assigning a single label per object that contradicts the core requirement of CylinDeRS, which
necessitates the prediction of three labels (material, size, and orientation) for each instance.

To overcome these issues, we adopted a multi-head multi-class classification approach
for this task that enables the extraction of three labels for each gas cylinder instance, result-
ing in a single prediction for each attribute type, in one pass (see Figure 4). By approaching
this as a multi-class classification task with three different output heads, the conducted
experiments involve the exploration and modification of SotA deep-learning-based classi-
fiers. To provide a set of widely used pre-trained models to the research community and
for implementation simplicity, the widely used ResNet family [97] of classifiers, specif-
ically ResNet-50 and ResNet-101, are selected and adapted to effectively support this
multifaceted task.

ResNet-50 [97] is a pivotal member of the ResNet family. As a variant of the ResNet
architecture with 50 layers, it has established itself as a benchmark in computer vision tasks.
Employing skip connections and forming residual blocks, ResNet-50 facilitates the smooth
flow of information through the network and excels in capturing representative features.
ResNet-101 [97] is another member of the ResNet family that extends the architecture to
101 layers. It builds upon the success of ResNet-50, utilizing a larger number of residual
connections and blocks, providing a deeper model. The additional layers contribute to
a more comprehensive understanding of image features, potentially improving accuracy,
especially in scenarios with complex details or subtle variations.
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Figure 4. Multi-head multi-class classification in CylinDeRS, wherein each output head corresponds
to a distinct attribute type, extracting a label from the three available categories for each type.

In the experiments, the PyTorch implementation (https://pytorch.org/vision/main/
models/resnet.html (accessed on 17 January 2025)) of the ResNet-50 and ResNet-101 models
is deployed, where the stride for downsampling is placed to the second 3 × 3 convolution.
Upon acceptance of this work, both models trained for the attribute classification task using
the proposed CylinDeRS dataset will be made publicly available.

4.3. Implementation and Training

To achieve improved performance, transfer learning is employed for the selected mod-
els for both object detection and object attribute classification tasks. Additionally, during the
training process, we carefully tune a range of hyperparameters for both tasks, including the
learning rate, batch size, momentum, weight decay, and optimization algorithms, through
an extensive validation process. This leads to reporting optimal performance with an ideal
balance between convergence speed and generalization capability for the training models
that are evaluated in this work.

In order to conduct a fair comparison, all models for the gas cylinder detection task are
pre-trained on the widely used COCO dataset. In terms of hyperparameters, the learning
rate is initially set to 0.01 and decayed by a factor of 0.1 at the 50th and 100th epochs.
The total number of training epochs is 200. The models are trained using Stochastic
Gradient Descent (SGD) [101] as the optimizer with a batch size of 32, momentum of 0.9,
and weight decay of 0.001. The deep learning models for the gas cylinder detection task are
trained using the training set and evaluated on the validation and test sets of CylinDeRS;
the evaluation results are summarized below in Table 3 and discussed in Section 5.

For the attribute classification task, the selected models are fine-tuned using pre-
trained ImageNet weights to establish a benchmark comparison. The training process
runs for a total of 150 epochs, with an initial learning rate of 0.001, which decays by a
factor of 0.1 every 40 epochs. The Adam optimizer [102] is used, with a batch size of 32.
To prepare the dataset for attribute classification, all cylinder objects are extracted from the
images using ground truth bounding boxes, creating a collection of 25,269 images resized
to 224 × 224 pixels for model input. The models are trained on the CylinDeRS training
set, with their performance evaluated on both the validation and test sets; the evaluation
results are summarized below in Table 4 and discussed in Section 5.

It is important to note that padding is applied to preserve the original features of the
gas cylinder instances, preventing the neural network from learning potentially inaccurate
features during training. This strategic use of padding ensures the network’s understanding
of the spatial characteristics and contextual relationships within and around each cylinder.
During convolution operations, the input image undergoes a series of convolution filters,
potentially shrinking its spatial dimensions (height and width) [103]. Padding addresses
this issue by adding a border of zeros around the original image. This maintains the

https://pytorch.org/vision/main/models/resnet.html
https://pytorch.org/vision/main/models/resnet.html
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original spatial dimensions throughout the network, enabling the CNN to capture features
from the entire image. Without padding, these features might be distorted due to the
shrinking size, potentially leading to inaccurate feature learning and classification errors.
Furthermore, the edge pixels might be excluded from the convolution operation, causing
the network to miss these potentially informative details. This can lead to the network
learning inaccurate features that are biased towards the center of the image, ultimately
impacting classification performance.

4.4. Data Augmentation

To address the issue of data imbalance and enhance the generalization capability of the
models, particularly for underrepresented classes (i.e., “fallen” and “material unknown”),
data augmentation pre-processing techniques were employed. These techniques aim to
artificially increase the diversity of the training dataset, reducing the risk of overfitting
and improving the model’s robustness. These techniques include random cropping and
horizontal flipping as the geometrical transformations, and contrast and brightness en-
hancement as the intensity adjustments. A random crop is an arbitrary sample of the
original image. The randomly cropped portion is resized to the original image size and fed
to the network. Horizontal flipping involves flipping the image horizontally 180 degrees to
increase the diversity of the samples. The contrast enhancement method expands the range
between the image’s lightest and darkest pixels, resulting in a more pronounced distinction
between features and details. Brightness enhancement focuses on adjusting an image’s
overall luminance or brightness level for better visual perception.

4.5. Hardware and Software Configurations

All experiments were conducted on a computer system with Ubuntu 20.04 equipped
with an Intel Core i7 3.6 GHz CPU, 128 GB RAM, and an Nvidia RTX 3090 GPU with
24 GB VRAM. The software stack consists of the Python language, along with popular
computer vision libraries such as OpenCV (https://opencv.org/ (accessed on 17 January
2025)), TensorFlow (https://tensorflow.org/ (accessed on 17 January 2025)), and PyTorch
(https://pytorch.org/ (accessed on 17 January 2025)). The deep learning models are trained
and evaluated with GPU acceleration, harnessing the enhanced processing capabilities for
efficient training and inference.

The training times for the object detection models on the CylinDeRS dataset vary de-
pending on the architecture. Faster R-CNN required approximately 12 h, while YOLOv8m
demonstrated faster training, taking around 4 h. YOLOv11m showed a similarly efficient
training time of approximately 3 h and 30 m, reflecting its optimized architecture for quicker
convergence. RT-DETR, with its transformer-based architecture, took longer, requiring
around 6 h and 30 m due to the additional computational overhead. For the attribute
classification task, ResNet-50 required approximately 5 h for the training process, while
ResNet-101 took around 7 h, reflecting the increased complexity of the deeper ResNet-101
architecture compared to ResNet-50.

4.6. Evaluation Metrics

To assess the performance of the gas cylinder detection algorithms, the evaluation
metrics commonly used in object detection tasks are adopted: precision, recall, and mean
average precision (mAP). Precision measures the accuracy of positive predictions made
by an object detection model, while recall quantifies the ability of an object detection
model to find all relevant objects in the provided data. The mAP metric evaluates the
overall performance of an object detection model across multiple object classes. It combines
both precision and recall by calculating the area under the precision–recall curve—known

https://opencv.org/
https://tensorflow.org/
https://pytorch.org/
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as average precision (AP)—for each class and then taking the mean of these AP scores.
The values are calculated as depicted in the following equations:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, mAP =
1

|Classes|

|Classes|

∑
i=1

APi (1)

where TP, FP, FN, and AP denote the true positive, false positive, false negative, and average
precision values, respectively.

For the evaluation of the attribute classification models, the accuracy evaluation
metric is utilized. Accuracy is a highly intuitive way to evaluate the performance of any
classification algorithm by calculating the percentage of the correct predictions. Specifically,
it corresponds to the division of the number of correct predictions with the total number of
predictions, as shown below:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false
negative values, respectively.

5. Results and Discussion
In this section, the evaluation of the performance of SotA models on the CylinDeRS

dataset is presented regarding both gas cylinder detection and attribute classification tasks.
By conducting this evaluation, we aim to understand the strengths and limitations of the
models and identify potential areas for improvement, which is essential for advancing the
accuracy and reliability of automated systems for real-world applications. The results for
each analysis are thoroughly presented, and a comprehensive discussion unfolds around
the outcomes.

5.1. Gas Cylinder Detection Results

We initiate the evaluation by conducting a series of experiments to compare the
performance of SotA algorithms on the CylinDeRS dataset. Four object detection methods
were selected, Faster R-CNN [93], YOLOv8 [94], YOLOv11 [95], and RT-DETR [96] (as
introduced in Section 4.1), each representing a unique category in terms of how they handle
and process images.

5.1.1. Performance Evaluation

The summary of the quantitative evaluation results, employing the three selected
state-of-the-art models and various metrics, is presented in Table 3. The evaluated deep-
learning-based models report adequate results in terms of precision, recall, and mAP
regarding both the validation (Val) and test (Test) sets. YOLOv11 exhibits the highest
performance across all the metrics, achieving a notable precision of 0.915 on the validation
set and 0.905 on the test set, alongside strong recall values of 0.853 (Val) and 0.816 (Test),
resulting in high mAP scores of 0.923 (Val) and 0.910 (Test). This suggests that YOLOv11
maintains consistency across both dataset splits, reinforcing its reliability. Meanwhile,
YOLOv8 and RT-DETR also exhibit strong performance, with slightly lower precision
than YOLOv11 but maintaining competitive mAP scores of 0.916 and 0.922 (Val) and
0.904 and 0.903 (Test), respectively, highlighting their balanced precision–recall profiles.
In comparison, Faster R-CNN shows relatively moderate performance. With a validation
precision of 0.640 and a test precision of 0.610, alongside recall values of 0.568 (Val) and
0.550 (Test), this two-stage model may benefit from enhancements, particularly in terms
of recall, on both sets. Overall, the quantitative analysis reveals that, within the proposed
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dataset, the single-stage approach for object detection outperforms the two-stage approach
and exhibits a performance advantage over the transformer-based method.

To gain deeper insights into the performance of the fine-tuned models, qualitative
results are also presented in Figure 5. Example images from the CylinDeRS dataset are
showcased along with the corresponding detection results for each of the models. In the
left column, the ground truth bounding box annotations are highlighted in yellow color,
delineating the boundaries of each gas cylinder instance in the showcased images from
the CylinDeRS dataset within the image. The remaining three columns illustrate the pre-
dicted output for each of the explored models, featuring bounding boxes around detected
gas cylinder instances, accompanied by the corresponding mAP scores. We can observe
that Faster R-CNN exhibits moderate performance with lower confidence scores and a
higher number of false positives. YOLOv8 and YOLOv11 demonstrate the best overall
performance, accurately detecting most gas cylinder instances with high confidence scores.
RT-DETR also performs well, achieving results similar to the YOLO models, with high
confidence scores, albeit missing detecting a challenging instance.

Table 3. Gas cylinder detection performance comparison of Faster R-CNN, YOLOv8, YOLOv11, and
RT-DETR fine-tuned using the CylinDeRS dataset.

Model Precision Recall mAP

Val Test Val Test Val Test

Faster R-CNN [93] 0.640 0.610 0.568 0.550 0.612 0.590
YOLOv8 [94] 0.915 0.902 0.850 0.812 0.916 0.904
YOLOv11 [95] 0.915 0.905 0.853 0.816 0.923 0.910
RT-DETR [96] 0.913 0.884 0.843 0.825 0.922 0.903

Figure 5. Visual representation of indicative results for the gas cylinder detection task using the
CylinDeRS dataset. The left column displays the input images fed into the models with the ground
truth annotation of bounding boxes colorized with yellow, while the subsequent columns showcase
the corresponding detection outcomes for each of the fine-tuned models.

5.1.2. Limitations

To identify the limitations and challenges within the target domain, a thorough qualita-
tive examination is conducted, revealing the following key findings: (a) detection accuracy
may be compromised in instances of severe occlusion or partial concealment of gas cylinders
behind objects, (b) the models might encounter difficulties in handling unusual settings,
including highly reflective surfaces or non-standard gas cylinder shapes, and (c) attention
is required for instances of false positive detections, where objects are incorrectly identified
as gas cylinders mostly due to objects with similar shapes or appearances, such as bottles,
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pipes, or cylindrical containers. All these cases can have significant implications in critical
applications, where misidentification might lead to potential risks or errors.

Figure 6 provides a visual representation of instances where these limitations become
apparent. The top row illustrates representative—to each limitation—samples highlighted
by the bounding box annotations, as included in ground truth annotation files of the
CylinDeRS dataset, while, in the second row, image samples of the detections extracted
using the YOLOv11 model are depicted. In the last row, the reason for the erroneous
prediction is depicted. The first sample reveals instances where occlusion led to failure
in identifying certain gas cylinders (scenario (a)). In the second sample, a false positive
detection is performed due to a gas cylinder instance reflection on a highly reflective surface
(scenario (b)). The third and fourth samples depict false positive detections of objects with
similar shapes as gas cylinders (scenario (c)).

Figure 6. Cylinder detection false positive and negative samples in CylinDeRS dataset. The ground
truth labels are depicted in the first row, while the samples in the second row indicate visual instances
where the models have yielded erroneous predictions. In the last row, the potential cause of the
erroneous prediction is provided.

5.2. Gas Cylinder Attribute Classification Results

The evaluation process is applied on object attribute classification, employing the
CylinDeRS dataset to rigorously assess the accuracy of prominent deep learning models
on the material, size, and orientation attributes. In this domain, we focus on two distin-
guished members of the ResNet family—ResNet-50 and ResNet-101—both known for their
commendable performance in feature extraction and representation learning.

5.2.1. Performance Evaluation

The results presented in Table 4 include the comparative performance of ResNet-50
and ResNet-101 for the performance evaluation of the attribute classification task on both
the validation and test sets. Notably, the individual accuracy scores for material, size,
and orientation provide insights into the models’ effectiveness in discerning each specific
attribute. ResNet-50 exhibits commendable accuracy scores of 0.946 (Val) and 0.956 (Test)
in material and 0.932 (Val) and 0.954 (Test) in orientation classification but demonstrates
relatively lower Val and Test accuracy of 0.735 and 0.753 in the size attribute predictions.
On the other hand, ResNet-101 showcases improved performance across all the attribute
categories, achieving higher accuracy values in the material classification, with scores of
0.959 (Val) and 0.962 (Test), and shows similar improvements in the size attribute, scoring



Sensors 2025, 25, 1016 18 of 26

0.751 (Val) and 0.772 (Test). Additionally, its orientation accuracy is slightly higher than
ResNet-50’s, reaching 0.944 (Val) and 0.958 (Test).

Since the individual attribute scores reflect the model’s predictive accuracy for each
attribute separately, the overall accuracy metric is incorporated for a more accurate eval-
uation, providing the model’s performance across all three attributes. In this case, a true
positive result indicates that the material, size, and orientation attributes were correctly
predicted for a gas cylinder. The overall accuracy metric reflects each model’s holistic
effectiveness in accurately identifying all three attributes concurrently. In this regard,
ResNet-101 leads, with an overall accuracy of 0.704 on the validation set and 0.716 on the
test set, representing a performance boost compared to ResNet-50, which scores 0.670 (Val)
and 0.675 (Test).

To further assess the performance of the attribute classification models fine-tuned
on the proposed dataset, qualitative results are showcased in Figure 7. The models are
provided with input in the form of images derived by cropping the gas cylinder instances
from the original images based on the ground truth bounding boxes. The visualization
includes sample gas cylinder instances and their corresponding material, size, and ori-
entation classifications predicted by the models. The top row presents the input images
alongside their ground truth attribute labels. The predictions for ResNet-50 and ResNet-101
are displayed in the middle and bottom rows.

Table 4. SotA performance comparison across the different attribute categories of the Cylin-
DeRS dataset.

Model Material Size Orientation Overall

Val Test Val Test Val Test Val Test

ResNet-50 [97] 0.946 0.956 0.735 0.753 0.932 0.954 0.670 0.675
ResNet-101 [97] 0.959 0.962 0.751 0.772 0.944 0.958 0.704 0.716

Figure 7. Attribute classification results on CylinDeRS dataset: representative true positive results.
The top row displays images with their corresponding ground truth attribute labels. The middle and
bottom rows show the predictions for the ResNet-50 and ResNet-101 models, respectively.
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5.2.2. Limitations

The exploration of limitations is crucial for a comprehensive understanding of the
attribute classification outcomes within the CylinDeRS dataset. After a thorough qualitative
evaluation, two main limitations have been observed: (a) one notable limitation stems from
the inherent complexity of gas cylinder attributes and the data imbalance due to unusual
scenarios (e.g., burnt or heavily damaged gas cylinder), as described in Section 3.2, and
(b) the occurrence of ambiguous instances, such as gas cylinders with uncertain material
compositions or obscured orientations, posing challenges for accurate classification.

Figure 8 illustrates misclassified visual samples. The first sample is a case of size
attribute misclassification, where both models inaccurately predict the size attribute as
“short” instead of “size unk”, possibly attributed to misleading visual cues resulting from
the heavily cropped gas cylinder instance. Similarly, in the second example, ResNet-50
categorizes the gas cylinder object as “short” instead of “size unk”. This could be due to the
resemblance of this instance to a short round-shaped cylinder. In the last image, the ResNet-
50-based method struggles to classify size and orientation attributes, while ResNet-101
predicts all the attributes correctly. With fewer layers, ResNet-50 might primarily focus on
learning lower-level features like edges and corners, which might be insufficient for tasks
requiring understanding the object’s size and spatial position within the scene.

Figure 8. Attribute classification results on CylinDeRS dataset: representative erroneous predictions.
The ground truth attribute labels are depicted in the first row. The middle and bottom rows show
the predictions for the ResNet-50 and ResNet-101 models, respectively. Erroneous predictions are
highlighted in red.

For further interpretation of the results and analysis of the limitations for the attribute
classification task, the confusion matrices for the material, size, and orientation attributes are
presented in Figure 9. These matrices illustrate a detailed and comprehensive examination
of the top-performing model’s results for each class compared to the actual labels.
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(a) Material. (b) Size.

(c) Orientation.

Figure 9. Confusion matrices for the gas-cylinder-related attributes: (a) material, (b) size, and
(c) orientation attributes.

Regarding the material attribute, for instances genuinely belonging to the “metal”
class, the model predicts three-thousand-eight-hundred-one (96.3%) instances correctly;
however, there are one-hundred-thirty-nine (3.5%) instances misclassified as “fiber” and
eight (0.2%) misclassified as “material unk”. For the “fiber” class, the model predicts
seven-hundred-eighty-five (91%) correctly, but there are seventy-three (7.5%) instances
misclassified as “metal” and four (0.5%) as “material unk”. For instances of the “material
unk” class, the model correctly predicts only four (7.7%) cases labeled as “material unk”.
There are thirty-three (63.5%) instances misclassified as “metal” and fifteen (28.8%) misclas-
sified as “fiber”. The high misclassification rates for the “material unk” class reflect that
the model’s ability to discern this category is limited, which suggests a potential need for
additional data to increase its accuracy in identifying such instances.

For the size attribute, the model correctly identifies 1846 (72.3%) instances labeled as
“short”. There are 468 (18.3%) instances misclassified as “long” and 239 (9.4%) misclassified
as “size unk”. Similarly, the model correctly predicts 998 (77.8%) instances labeled as
“long”. There are 191 (14.9%) instances misclassified as “short” and 94 (7.3%) as “size
unk”. The model correctly identifies 681 (66.4%) instances labeled as “unknown size.”
There are 146 (14.2%) instances misclassified as “short” and 199 (19.4%) misclassified
as “long”, revealing challenges in correctly assigning instances to the “size unk” class.
The results indicate that, while the model performs relatively well in distinguishing between
“short” and “long” instances, it struggles with the “size unk” category, potentially due to
insufficient or ambiguous features distinguishing it from the other two classes.

In regard to the orientation attribute, the model performs well in correctly identifying
instances labeled as “standing”, with a high count of 4275 (95.1%) true positives. However,
there are 176 (3.9%) instances misclassified as “fallen” and 46 (1%) misclassified as “orien-
tation unk”. For the “fallen” class, the model correctly identifies one-hundred-fifty-eight
(63.2%) instances. Still, there are eighty-nine (35.6%) instances misclassified as “standing”
and three (1.2%) misclassified as “orientation unk”. The accuracy for the “fallen” class is
reasonable, but there is room for improvement, especially in reducing misclassifications
as “standing”. For the “orientation unk” class, the model correctly predicts thirty-seven
(32.2%) instances, but there are seventy-one (61.7%) instances misclassified as “standing”
and seven (6.1%) misclassified as “fallen”. The accuracy for the “orientation unk” class
is lower compared to the other classes, suggesting a need for further improvement in
classification for instances with unknown orientation.
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In summary, the model performs well in several areas, but notable challenges remain.
While the model excels at classifying the “metal” and “fiber” material attributes, it struggles
with the “material unk” class, indicating the need for more data or improved feature extrac-
tion. For size classification, the model performs well with “short” and “long” gas cylinders
but faces challenges with the “size unk” category, likely due to ambiguous features. Ori-
entation classification is strong for “standing” gas cylinders but requires improvement
mainly for the “orientation unk” class. These limitations highlight areas for future work,
particularly in increasing data diversity and exploring new models’ capabilities in handling
ambiguous and rare cases.

5.3. Future Research

For future research involving CylinDeRS, there are several key directions that re-
searchers could investigate based on the limitations of the current version of the dataset.
First, future efforts could focus on augmenting rare scenarios, including creating synthetic
data, to mitigate data imbalance across attribute categories while also ensuring that models
can handle edge cases, such as cylinders in hazardous conditions or extreme environments.
Addressing the limitations in terms of model performance for highly occluded or reflective
instances is also a critical avenue for improvement. Techniques like multi-view imaging,
3D reconstruction, or leveraging transformer-based architectures that can capture spatial
and contextual relationships could be explored. Furthermore, pre-processing steps such as
glare removal, image normalization, and advanced feature extraction could also help to
reduce noise and improve performance. Additionally, models that incorporate contextual
information—such as surrounding objects or background—are likely to yield improved
performance, particularly in scenarios involving partially occluded cylinders or those in
unusual orientations. Lastly, expanding the dataset with additional attributes (e.g., cylinder
usage, pressure ratings, or markings and labels) could enable more specialized applications,
such as safety monitoring or regulatory compliance, further enhancing the dataset’s utility.

6. Conclusions
This work introduced CylinDeRS, a domain-specific computer vision dataset specif-

ically curated for two tasks: (a) object detection for detecting gas cylinder instances and
(b) gas cylinder attribute classification for material, size, and orientation attributes. The pro-
posed dataset consists of 7060 images, captured under varying settings and closely rep-
resenting real-life situations, featuring a total of 25,269 annotated gas cylinder object
instances. Furthermore, a systematic methodology for the creation of domain-specific
datasets is proposed, covering the entire process from data collection and annotation to
structure definition. A series of experiments were conducted using deep-learning-based
frameworks from various categories to verify the practical application of CylinDeRS and
provide insights into the strengths and limitations in this domain. While the baseline results
are encouraging, achieving a maximum mAP of 91% for gas cylinder object detection and
a maximum accuracy of 71.6% for attribute classification, the complex characteristics of
gas cylinder instances pose notable challenges that need to be addressed. Future work
includes expanding the dataset with challenging classes by adding new attribute categories
and exploring performance improvements for deep learning models.
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